精英家教网 > 初中数学 > 题目详情
11.如图,已知AD与AB,CD交于A,D两点,EC,BF与AB,CD交于E,C,B,F,且∠1=∠2,∠B=∠C,说明CE∥BF.

分析 结合对顶角相等可求得∠3=∠2,可证明CE∥BF.

解答 证明:∵∠1=∠3,∠1=∠2,
∴∠3=∠2,
∴CE∥BF.

点评 本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行,④a∥b,b∥c⇒a∥c.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)[1-(1-0.5×$\frac{1}{3}$)]×[2-(-3)2];
(2)3(-ab+2a)-(3a-b)+3ab;
(3)6(7x+16)=7(8x-2);
(4)$\frac{1-m}{2}$-$\frac{3-3m}{4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算或解方程:
(1)$(-24)×(\frac{1}{8}-\frac{1}{3}+\frac{1}{4})+{(-2)^3}$;
(2)$\frac{x-3}{5}-\frac{x-4}{3}=1$;
(3)$\frac{0.2x-0.1}{0.3}=\frac{0.1x+0.2}{0.2}+1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一只箱子共有3个白球,2个红球,它们除颜色之外均相同.
(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,用列表法或树状图求两次摸出的球都是白球的概率.
(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,用列表法或树状图求两次摸出的球都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解下列不等式(组):
(1)3+3x<2x+4;   
(2)$\left\{\begin{array}{l}{2x-2>0①}\\{\frac{1}{2}(x+4)<3②}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)计算:|$\root{3}{27}$|+|-$\sqrt{16}$|+$\sqrt{4}$-$\root{3}{8}$;     
(2)解方程:125(-x+1)3=512.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知关于x的不等式2x-a>2与不等式3x>4的解集相同,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简再求值:
-(3a3b-2ab3)÷(-ab)-(-a-2b)(-a+2b)-(-2a)2,其中a=-2,b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.观察下列各式及其验证过程:$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,验证:$\sqrt{2+\frac{2}{3}}=\sqrt{\frac{8}{3}}=\sqrt{\frac{{{2^2}×2}}{3}}=2\sqrt{\frac{2}{3}}$.$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,验证:$\sqrt{3+\frac{3}{8}}=\sqrt{\frac{27}{8}}=\sqrt{\frac{{{3^2}×3}}{8}}=3\sqrt{\frac{3}{8}}$.
(1)按照上述两个等式及其验证过程,猜想$\sqrt{4+\frac{4}{15}}$的变形结果并进行验证.
(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.
(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.

查看答案和解析>>

同步练习册答案