【题目】某市教研室的数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中九年级学生的参与情况,绘制成如图所示的频数.
分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有60000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?
【答案】(1)560;(2)54;(3)图详见解析;(4)18000.
【解析】
(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;
(2)利用360乘以对应的百分比即可求解;
(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;
(4)利用60000乘以对应的比例即可.
(1)调查的总人数是:224÷40%=560(人).
故答案为:560;
(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°.
故答案为:54;
(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).
(4)60000×=18000(人).
答:在试卷评讲课中,“独立思考”的初三学生约有18000人.
科目:初中数学 来源: 题型:
【题目】已知一元二次方程x2﹣4x+k=0有两个不相等的实数根
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.
(1)当点A在x轴的正半轴上时,直接写出点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着市民环保意识的增强,烟花爆竹销售量逐年下降,菏泽市2014年销售烟花爆竹20万箱,到2016年烟花爆竹销售量为9.8万箱.求菏泽市2014年到 2016年烟花爆竹销售量的平均下降率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形AOBC的边OB、OA分别在x、y轴上,点C坐标为(8,8),将正方形AOBC绕点A逆时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段BC于点Q,ED的延长线交线段OB于点P,连接AP、AQ.
(1)求证:△ACQ≌△ADQ;
(2)求∠PAQ的度数,并判断线段OP、PQ、CQ之间的数量关系,并说明理由;
(3)连接BE、EC、CD、DB得到四边形BECD,在旋转过程中,四边形BECD能否是矩形?如果能,请求出点P的坐标,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是( )
A. (4,2) B. (2,4) C. (,3) D. (3,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列命题:
①若a≠b,则a2≠b2;②对于不为零的实数c,关于x的方程的根是c.
③对角线互相垂直平分的四边形是菱形.④过一点有且只有一条直线与已知直线平行.
⑤在反比例函数中,如果函数值y<1时,那么自变量x>2,是真命题的个数是 ( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处B.二处C.三处D.四处
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com