5£®È¥ÄêÒÔÀ´£¬ÎÒ¹úÖж«²¿µØÇø³ÖÐø³öÏÖÎíö²ÌìÆø£®ÎÒÊÐij¼ÇÕßΪÁËÁ˽⡰Îíö²ÌìÆøµÄÖ÷Òª³ÉÒò¡±£¬Ëæ»úµ÷²éÁ˲¿·ÖÊÐÃñ£¬²¢¶Ôµ÷²é½á¹û½øÐÐÕûÀí£¬»æÖÆÁËÈçÏÂÉв»ÍêÕûµÄͳ¼Æ±í£º
×é±ð¹ÛµãƵÊý
A´óÆøÆøÑ¹µÍ£¬¿ÕÆø²»Á÷¶¯120
BµØÃæ»Ò³¾¶à£¬¿ÕÆøÊª¶ÈµÍM
CÆû³µÎ²ÆøÅÅ·ÅN
D¹¤³§Ôì³ÉµÄÎÛȾ180
EÆäËü90
Çë¸ù¾Ýͼ±íÖÐÌṩµÄÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£ºm=60£¬n=150£¬ÉÈÐÎͳ¼ÆÍ¼ÖÐE×éËùÕ¼°Ù·Ö±ÈΪ15%£»
£¨2£©Èô¸ÃÊÐÈË¿ÚÔ¼ÓÐ75ÍòÈË£¬ÇëÄã¹À¼ÆÆäÖгÖD×é¡°¹Ûµã¡±µÄÊÐÃñÈËÊý£»
£¨3£©ÈôÔÚÕâ´Î½ÓÊܵ÷²éµÄÊÐÃñÖУ¬Ëæ»ú³é²éÒ»ÈË£¬Ôò´ËÈ˳ÖC×é¡°¹Ûµã¡±µÄ¸ÅÂÊÊǶàÉÙ£¿

·ÖÎö £¨1£©¸ù¾ÝA×éÓÐ120ÈË£¬ËùÕ¼µÄ°Ù·Ö±ÈÊÇ20%£¬¼´¿ÉÇóµÃµ÷²éµÄ×ÜÈËÊý£¬È»ºó¸ù¾Ý°Ù·Ö±ÈµÄÒâÒåÇóµÃmºÍnµÄÖµ£»
£¨2£©ÀûÓÃ75Íò³ËÒÔ¶ÔÓ¦µÄ°Ù·Ö±È¼´¿ÉÇóµÃ£»
£¨3£©ÇóµÃC×éËùÕ¼µÄƵÂʼ´¿ÉÇóµÃ£®

½â´ð ½â£º£¨1£©µ÷²éµÄ×ÜÈËÊýÊÇ£º120¡Â20%=600£¨ÈË£©£¬
Ôòm=600¡Á10%=60£¬
n=600-120-60-180-90=150£¨ÈË£©£¬
ÉÈÐÎͳ¼ÆÍ¼ÖÐE×éËùÕ¼°Ù·Ö±ÈÊÇ£º$\frac{90}{600}$=15%£»
£¨2£©¹À¼ÆÆäÖгÖD×é¡°¹Ûµã¡±µÄÊÐÃñÈËÊý£º75¡Á$\frac{90}{600}$-22.5£¨Íò£©£»
£¨3£©Ëæ»ú³é²éÒ»ÈË£¬Ôò´ËÈ˳ÖC×é¡°¹Ûµã¡±µÄ¸ÅÂÊÊÇ£º$\frac{150}{600}$=$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÆµÊý·Ö²¼±íºÍÉÈÐÎͳ¼ÆÍ¼£¬ÉÈÐÎͳ¼ÆÍ¼ÄÜÐÎÏó·´Ó³³ö¸÷²¿·ÖËùÕ¼µÄ°Ù·Ö±È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®·½³Ì$\sqrt{1-x}$=3µÄ½âÊÇx=-8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÎªÁ˽âÄ³Ð¡Çø¡°È«Ãñ½¡Éí¡±»î¶¯µÄ¿ªÕ¹Çé¿ö£¬Ä³Ö¾Ô¸Õß¶Ô¾ÓסÔÚ¸ÃÐ¡ÇøµÄ50Ãû³ÉÄêÈËÒ»ÖܵÄÌåÓý¶ÍÁ¶Ê±¼ä½øÐÐÁËͳ¼Æ£¬²¢»æÖƳÉÈçͼËùʾµÄÌõÐÎͳ¼ÆÍ¼£¬Õâ×éÊý¾ÝµÄÖÚÊýºÍÖÐλÊý·Ö±ðÊÇ£¨¡¡¡¡£©
A£®6£¬4B£®6£¬6C£®4£¬4D£®4£¬6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚ¡ÑOÖУ¬Ô²µÄ°ë¾¶Îª6£¬¡ÏB=30¡ã£¬ACÊÇ¡ÑOµÄÇÐÏߣ¬ÔòCDµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®1B£®3C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©Èçͼ1£¬½«Ö±½ÇµÄ¶¥µãE·ÅÔÚÕý·½ÐÎABCDµÄ¶Ô½ÇÏßACÉÏ£¬Ê¹½ÇµÄÒ»±ß½»CDÓÚµãF£¬ÁíÒ»±ß½»CB»òÆäÑÓ³¤ÏßÓÚµãG£¬ÇóÖ¤£ºEF=EG£»
£¨2£©Èçͼ2£¬½«£¨1£©Öеġ°Õý·½ÐÎABCD¡±¸Ä³É¡°¾ØÐÎABCD¡±£¬ÆäËûÌõ¼þ²»±ä£®ÈôAB=m£¬BC=n£¬ÊÔÇó$\frac{EF}{EG}$µÄÖµ£»
£¨3£©Èçͼ3£¬½«Ö±½Ç¶¥µãE·ÅÔÚ¾ØÐÎABCDµÄ¶Ô½ÇÏß½»µã£¬EF¡¢EG·Ö±ð½»CDÓëCBÓÚµãF¡¢G£¬ÇÒECƽ·Ö¡ÏFEG£®ÈôAB=2£¬BC=4£¬ÇóEG¡¢EFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÎÒÃdz£Óá°yËæxµÄÔö´ó¶øÔö´ó£¨»ò¼õС£©¡±À´±íʾÁ½¸ö±äÁ¿Ö®¼äµÄ±ä»¯¹ØÏµ£®ÓÐÕâÑùÒ»¸öÇé¾³£ºÈçͼ£¬Ð¡Íõ´ÓµãA¾­¹ý·µÆCµÄÕýÏ·½ÑØÖ±Ïß×ßµ½µãB£¬ËûÓë·µÆCµÄ¾àÀëyËæËûÓëµãAÖ®¼äµÄ¾àÀëxµÄ±ä»¯¶ø±ä»¯£®ÏÂÁк¯ÊýÖÐyÓëxÖ®¼äµÄ±ä»¯¹ØÏµ£¬×îÓпÉÄÜÓëÉÏÊöÇé¾³ÀàËÆµÄÊÇ£¨¡¡¡¡£©
A£®y=x?B£®y=x+3C£®y=$\frac{3}{x}$?D£®y=£¨x-3£©2+3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨2a£©2=2a2B£®a6¡Âa3=a3C£®a3-a2=a6D£®3a2+2a3=5a3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÁ½Ö±Ïßy1=2x-3£¬y2=6-x£®
£¨1£©ÇóËüÃǵĽ»µãAµÄ×ø±ê£»
£¨2£©ÇóÕâÁ½ÌõÖ±ÏßÓëxÖáËùΧ³ÉµÄÈý½ÇÐÎÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÎÊÌ⣺
²ÄÁÏ£º½«·Öʽ$\frac{-{x}^{4}-{x}^{2}+3}{-{x}^{2}+1}$²ð·Ö³ÉÒ»¸öÕûʽÓëÒ»¸ö·Öʽ£¨·Ö×ÓΪÕûÊý£©µÄºÍµÄÐÎʽ£®
½â£ºÓÉ·ÖĸΪ-x2+1£¬¿ÉÉè-x4-x2+3=£¨-x2+1£©£¨x2+a£©+b
Ôò-x4-x2+3=£¨-x2+1£©£¨x2+a£©+b=-x4-£¨a-1£©x2+£¨a+b£©
¡ß¶ÔÓ¦ÈÎÒâx£¬ÉÏÊöµÈʽ¾ù³ÉÁ¢£¬¡à$\left\{\begin{array}{l}{a-1=1}\\{a+b=3}\end{array}\right.$£¬¡àa=2£¬b=1
¡à$\frac{-{x}^{4}-{x}^{2}+3}{-{x}^{2}+1}$=$\frac{£¨-{x}^{2}+1£©£¨{x}^{2}+2£©+1}{-{x}^{2}+1}$=$\frac{£¨-{x}^{2}+1£©£¨{x}^{2}+2£©}{-{x}^{2}+1}$+$\frac{1}{-{x}^{2}+1}$=x2+2+$\frac{1}{-{x}^{2}+1}$
ÕâÑù£¬·Öʽ$\frac{-{x}^{4}-{x}^{2}+3}{-{x}^{2}+1}$±»²ð·Ö³ÉÁËÒ»¸öÕûʽx2+2ÓëÒ»¸ö·Öʽ$\frac{1}{-{x}^{2}+1}$µÄºÍ£®
½â´ð£º
£¨1£©½«·Öʽ$\frac{-{x}^{4}-8{x}^{2}+10}{-{x}^{2}+1}$²ð·Ö³ÉÒ»¸öÕûʽÓëÒ»¸ö·Öʽ£¨·Ö×ÓΪÕûÊý£©µÄºÍµÄÐÎʽ£»
£¨2£©ÊÔ˵Ã÷$\frac{-{x}^{4}-8{x}^{2}+10}{-{x}^{2}+1}$µÄ×îСֵΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸