【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:AC=AE;
(2)若点E为AB的中点,CD=4,求BE的长.
【答案】(1)证明见解析;(2)4
【解析】
(1)求出△ACD≌△AED,根据全等三角形的性质得出即可;
(2)求出AD=BD,推出∠B=∠DAB=∠CAD,求出∠B=30°,即可求出BD=2CD=8,根据勾股定理求出即可.
(1)证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,
∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,
在△ACD和△AED中
∴△ACD≌△AED,
∴AC=AE;
(2)解:∵DE⊥AB,点E为AB的中点,
∴AD=BD,
∴∠B=∠DAB=∠CAD,
∵∠C=90°,
∴3∠B=90°,
∴∠B=30°,
∵CD=DE=4,∠DEB=90°,
∴BD=2DE=8,
由勾股定理得:BE=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中 AB=AC,D、E 两点分别在 AC、BC 上,BD 是∠ABC 的平分线,DE∥AB,若 BE=5cm,CE=3cm,则△CDE 的周长是( )
A. 13cmB. 11cmC. 9cmD. 8cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……
(1)写出第一次移动后这个点在数轴上表示的数为 ;
(2)写出第二次移动后这个点在数轴上表示的数为 ;
(3)写出第五次移动后这个点在数轴上表示的数为 ;
(4)写出第次移动结果这个点在数轴上表示的数为 ;
(5)如果第次移动后这个点在数轴上表示的数为56,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=(x﹣1)2+k的图象与x轴交于点A(﹣1,0),C两点,与y轴交于点B.
(1)求抛物线解析式及B点坐标;
(2)在抛物线上是否存在点P使S△PAC=S△ABC?若存在,求出P点坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-2ax+b经过点C(0,-),且与x轴交于点A、点B,若tanACO=.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P是线段OB上一动点(不与点B重合),MPQ=45,射线PQ与线段BM交于点Q,当△MPQ为等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数的图象经过点A,则k的值是( )
A. ﹣2 B. ﹣4 C. ﹣ D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于F。
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B顺时针旋转角α,且60°<α<180°,其他条件不变,如图2,请直接写出此时线段AF,EF与DE之间的数量关系。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com