8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=2x2+mx+n¾­¹ýµãA£¨0£¬-2£©£¬B£¨3£¬4£©
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬¶Ô³ÆÖáºÍ¶¥µã£»
£¨2£©ÉèµãB¹ØÓÚÔ­µãµÄ¶Ô³ÆµãΪC£¬¼ÇÅ×ÎïÏßÔÚA¡¢BÖ®¼äµÄ²¿·ÖΪͼÏóG£¨°üÀ¨A¡¢BÁ½µã£©
¢ÙµãDÊÇÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»¶¯µã£¬ÈôÖ±ÏßCDÓëͼÏóGÓй«¹²µã£¬½áºÏº¯ÊýͼÏó£¬ÇóµãD×Ý×ø±êtµÄȡֵ·¶Î§£®
¢ÚµãEÊÇͼÏóGÉÏÒ»¶¯µã£¬¶¯µãEÓëµãB£¬µãC¹¹³ÉÎÞÊý¸öÈý½ÇÐΣ¬ÔÚÕâЩÈý½ÇÐÎÖдæÔÚÒ»¸öÃæ»ý×î´óµÄÈý½ÇÐΣ¬Çó³öÕâ¸öÈý½ÇÐεÄÃæ»ý£¬²¢Çó³ö´ËʱµãEµÄ×ø±ê£®

·ÖÎö £¨1£©Ö±½Ó°ÑAµãºÍBµã×ø±ê´úÈëy=2x2+mx+nµÃm¡¢nµÄ·½³Ì×飬Ôٽⷽ³Ì×éÇó³öm¡¢n¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£¬È»ºó°Ñ½âÎöʽÅä³É¶¥µãʽ¼´¿ÉµÃµ½Å×ÎïÏߵĶԳÆÖáºÍ¶¥µã×ø±ê£»
£¨2£©¢ÙÏÈÀûÓùØÓÚÔ­µã¶Ô³ÆµÄµãµÄ×ø±êÌØÕ÷µÃµ½Cµã×ø±êΪ£¨-3£¬-4£©£¬Èçͼ£¬¶ø¶¥µãM£¨1£¬-4£©£¬ÉèÖ±ÏßBC½»Ö±Ïßx=1ÓÚNµã£¬Óôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{4}{3}$x£¬ÓÉÓÚµ±µãDÔÚÏß¶ÎMNÉÏÔ˶¯Ê±£¬Ö±ÏßCDÓëͼÏóGÓй«¹²µã£¬ÓÚÊǿɵÃtµÄ·¶Î§Îª-4¡Üt¡Ü$\frac{4}{3}$£»¢Ú¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½£¬¡÷EBCµÄÃæ»ý×î´ó£¬ÔòEµãµ½BCµÄ¾àÀë×î´ó£¬¶ø¹ýµãEƽÐÐÓÚBCÇÒÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬µãEµ½BCµÄ¾àÀë×î´ó£¬Éè¹ýµãEµÄÖ±Ïß½âÎöʽΪy=$\frac{4}{3}$x+b£¬¸ù¾ÝÅ×ÎïÏßÓëÖ±ÏߵĽ»µãÎÊÌ⣬ͨ¹ý·½³Ì×é$\left\{\begin{array}{l}{y=2{x}^{2}-4x-2}\\{y=\frac{4}{3}x+b}\end{array}\right.$ÓÐÒ»×é½â¿ÉÇó³öbºÍΨһ½â£¬´Ó¶øµÃµ½Eµã×ø±ê£®

½â´ð ½â£º£¨1£©°ÑA£¨0£¬-2£©£¬B£¨3£¬4£©´úÈëy=2x2+mx+nµÃ$\left\{\begin{array}{l}{n=-2}\\{18+3m+n=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=-4}\\{n=-2}\end{array}\right.$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=2x2-4x-2£¬
ÒòΪy=2£¨x-1£©2-4£¬
ËùÒÔÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬¶¥µã×ø±êΪ£¨1£¬-4£©£»
£¨2£©¢ÙCµã×ø±êΪ£¨-3£¬-4£©£¬Èçͼ£¬¶¥µãM£¨1£¬-4£©£¬Ö±ÏßBC½»Ö±Ïßx=1ÓÚNµã£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx£¬°ÑB£¨3£¬4£©´úÈëµÃ3k=4£¬½âµÃk=$\frac{4}{3}$£¬
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{4}{3}$x£¬
µ±x=1ʱ£¬y=$\frac{4}{3}$£¬ÔòN£¨1£¬$\frac{4}{3}$£©£¬
ÒòΪµ±µãDÔÚÏß¶ÎMNÉÏÔ˶¯Ê±£¬Ö±ÏßCDÓëͼÏóGÓй«¹²µã£¬
ËùÒÔtµÄ·¶Î§Îª-4¡Üt¡Ü$\frac{4}{3}$£»
¢ÚÒòΪ¡÷EBCµÄÃæ»ý×î´ó£¬¶øBCΪ¶¨Öµ£¬ËùÒÔEµãµ½BCµÄ¾àÀë×î´ó£¬
ËùÒÔ¹ýµãEƽÐÐÓÚBCÇÒÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬µãEµ½BCµÄ¾àÀë×î´ó£¬
Éè¹ýµãEµÄÖ±Ïß½âÎöʽΪy=$\frac{4}{3}$x+b£¬
·½³Ì×é$\left\{\begin{array}{l}{y=2{x}^{2}-4x-2}\\{y=\frac{4}{3}x+b}\end{array}\right.$ÓÐÒ»×é½â£¬
ÏûÈ¥yµÃµ½6x2-16x-6-3b=0£¬¡÷=162-4¡Á6¡Á£¨-6-3b£©=0£¬½âµÃb=-$\frac{50}{9}$£¬x=$\frac{4}{3}$£¬
µ±x=$\frac{4}{3}$ʱ£¬y=$\frac{4}{3}$¡Á$\frac{4}{3}$-$\frac{50}{9}$=-$\frac{34}{9}$£¬
ËùÒÔEµã×ø±êΪ£¨$\frac{4}{3}$£¬-$\frac{34}{9}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍ¶þ´Îº¯ÊýµÄÐÔÖÊ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»¼ÇסÈý½ÇÐÎÃæ»ý¹«Ê½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª3m-4n=5£¬3s-4t=5£¬ÆäÖÐm£¬n£¬s£¬t¶¼Êdz£Êý£¬ÇëÄã̽¾¿£ºÊÇ·ñ´æÔÚÒ»¸ö¶þÔªÒ»´Î·½³Ì£¬Æä½â·Ö±ðΪ$\left\{\begin{array}{l}{x=m}\\{y=n}\end{array}\right.$Óë$\left\{\begin{array}{l}{x=s}\\{y=t}\end{array}\right.$£¿Èô´æÔÚ£¬ÇëÄãÇó³öÕâ¸ö¶þÔªÒ»´Î·½³Ì£»Èô²»´æÔÚ£¬ÇëÄã˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®µ±x=-3ʱ£¬Çó8x2-£¨x-2£©£¨x+1£©-3£¨x-1£©£¨x-2£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔÚ¡÷ABCÖУ¬AB=AC£¬µãDÊÇÖ±ÏßBCÉϲ»ÓëµãB£¬CÖØºÏµÄµã£¬µãEÊÇÉäÏßACÉÏÒ»µã£¬ÎªAD=AE£¬½«¡ÏCDEÑØÖ±ÏßDEÕÛµþ£¬ÕÛµþºó±ßDC¶ÔÓ¦µÄÉäÏßDC¡ä£¬½»ÉäÏßACÓÚµãC¡ä£®
£¨1£©Èçͼ¢Ù£¬µ±µãDÔÚBCÉÏʱ£¬ÇóÖ¤£ºAB•CC¡ä=BD•CD£»
£¨2£©Èçͼ¢Ú£¬µ±µãDÔÚBCµÄÑÓ³¤ÏßÉÏʱ£¬£¨1£©ÖеĽáÂÛÊÇ·ñ³ÉÁ¢£¿Èô³ÉÁ¢£¬ÇëÖ¤Ã÷£»Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª·½³Ìx2-5x-2=0£¬Çóһз½³Ì£¬Ê¹Æä¸ù·Ö±ðΪÒÑÖª·½³Ì¸÷¸ùƽ·½µÄµ¹Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©$\sqrt{12}$-$\sqrt{27}$+$\sqrt{75}$
£¨2£©$\sqrt{27}$-$\sqrt{\frac{1}{3}}$+$\sqrt{12}$  
£¨3£©$\frac{\sqrt{6}¡Á\sqrt{3}}{\sqrt{2}}$                      
£¨4£©£¨¦Ð-2009£©0+$\sqrt{12}$+|$\sqrt{3}$-2|
£¨5£©$\frac{\sqrt{72}-\sqrt{32}}{\sqrt{2}}$+£¨1+$\sqrt{3}$£©£¨1-$\sqrt{3}$£©
£¨6£©£¨$\sqrt{18}$-$\sqrt{\frac{1}{2}}$£©¡Â$\sqrt{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬PÊÇBC±ßÉÏÒ»µã£¬Á¬½áDP²¢ÑÓ³¤£¬½»ABµÄÑÓ³¤ÏßÓÚµãQ£®
£¨1£©ÇóÖ¤£º¡÷DCP¡×¡÷QBP£®
£¨2£©Èô$\frac{BP}{PC}$=$\frac{1}{3}$£¬Çó$\frac{AB}{AQ}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®»¯¼ò£º
£¨1£©£¨ab-5b2+2a3£©-£¨3ab+6a2-5b2£©
£¨2£©£¨a+b£©-2£¨2a-3b£©+£¨3a-2b£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®µ¥Ïîʽ-2x2y3µÄϵÊýÊÇ-2£¬´ÎÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸