精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,一次函数与反比例函数的图象在第一象限的交点为

1)求的值;

2)设一次函数的图像与轴交于点,连接,求的度数.

【答案】1;(2

【解析】

1)把A1n)代入反比例函数的解析式即可求出n的值即得A点坐标,再把A点坐标代入一次函数的解析式便可求出m的值;
2)过点AAMx轴于点M,根据一次函数的解析式可求出B点坐标,由A点坐标可求出∠AOM的度数,由勾股定理可求出OA的长,判断出△OAB的形状,再根据特殊角的三角函数值即可求出∠OBA的度数,进而求出∠BAO的度数.

解:(1)∵点在双曲线上,

又∵在直线上,

2)过点AAMx轴于点M

∵直线轴交于点

解得

∴点的坐标为

∵点的坐标为

Rt中,

由勾股定理,得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于两点,与轴交于点.

(1)的值;

(2)请直接写出不等式的解集;

(3)轴下方的图像沿轴翻折,点落在点处,连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某童装店购进一批20/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.

1)求yx之间的函数关系;

2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca≠0)的图象如图,给出下列四个结论:①4ac﹣b20②4a+c2b③3b+2c0④mam+b+bam≠﹣1),其中正确结论的个数是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m﹣1),点C(6,2),则对角线BD的最小值是(  )

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,四边形 ABCD 是正方形,点 GBC 上的任意一点,BF AG 于点 FDE AG于点 E,探究 BFDEEF 之间的数量关系.第一学习小组合作探究后,得到DEBF= EF,请证明这个结论;

(2)若(1)中的点 GCB 的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时 BFDEEF 之间的数量关系;

(3)如图 ③ ,四边形 ABCD 内接于 ⊙OAB=AD,EFAC 上的两点,且满足∠AED=∠BFA=∠BCD.试判断 ACDEBF 之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等边中,,动点从点出发,沿边以每秒1个单位的速度向终点运动,同时动点从点出发,以每秒2个单位的速度沿着方向运动.连结,设点运动的时间秒.

1)用含的代数式表示线段的长.

2)当时,求的值.

3)若的面积为,求之间的函数关系式.

4)如图②,当点之间时,连结被分割成,当其中的某两个三角形面积相等时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB是反比例函数yk0)图象上的两点,延长线段ABy轴于点C,且点B为线段AC中点,过点AADx轴于点D,点E为线段OD的三等分点,且OEDE.连接AEBE,若SABE7,则k的值为( )

A.12B.10C.9D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,CAB=60°,点O为斜边AB上一点,且OA=2,以OA为半径的OBC相切于D,与AC交于点E,连接AD

1)求线段CD的长;

2)求ORtABC重叠部分的面积.(结果保留准确值)

查看答案和解析>>

同步练习册答案