【题目】直接填答案:
①(-5)+(-5)=______;②(-5)+(+8)=______;③90(-3)=______;
④(-5)-(-3)=______;⑤-16-8=_____;⑥8-16=______;
⑦=______;⑧
=_____。
⑨ =_____;⑩
=______。
科目:初中数学 来源: 题型:
【题目】将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴、y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)
(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;
(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;
(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(3)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条公路的转弯处是一段圆弧().
(1)用直尺和圆规作出所在圆的圆心
;(要求保留作图痕迹,不写作法)
(2)若的中点
到
的距离为
m,
m,求
所在圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是acm,计算:
(1)窗户的面积;
(2)窗户的外框的总长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;
(1)填表:
剪的次数 | 1 | 2 | 3 | 4 | 5 |
正方形个数 |
(2)如果剪n次,共剪出多少个小正方形?
(3)如果剪了100次,共剪出多少个小正方形?
(4)观察图形,剪了n次,小正方形的边长为原来的 ,面积是原来的 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:
.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
(1)求坡角∠BCD;
(2)求旗杆AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费
如果超过20吨,未超过的部分按每吨
元收费,超过的部分按每吨
元收费
设某户每月用水量为x吨,应收水费为y元.
设某户居民每月用水量为m吨
,则应收水费为______元
用含m的代数式表示
;
设某户居民每月用水量为m吨
,则应收水费为______元
用含m的代数式表示
;
若该城市某户5月份水费平均为每吨
元,求该户5月份用水多少吨?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com