精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若该方程有两个实数根,求m的最小整数值;

(2)若方程的两个实数根为x1x2,且(x1x22+m2=21,求m的值.

【答案】(1)-2;(2)2.

【解析】

(1)利用判别式的意义得到=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;

(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2m2﹣2,再利用(x1x22+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.

(1)根据题意得=(2m+1)2﹣4(m2﹣2)≥0,

解得m≥﹣

所以m的最小整数值为﹣2;

(2)根据题意得x1+x2=﹣(2m+1),x1x2m2﹣2,

x1x22+m2=21,

x1+x22﹣4x1x2+m2=21,

(2m+1)2﹣4(m2﹣2)+m2=21,

整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,

m≥﹣

m的值为2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场,为了吸引顾客,在白色情人节当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

两红

一红一白

两白

礼金券(元)

18

24

18

1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.

2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点PPF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.

(1)求抛物线的解析式;

(2)PE的长最大时m的值.

(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 E ABC 的内心AE 的延长线和ABC 的外接圆相交于点 D BE

(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度数

(2) 求证DEDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:矩形ABCDAB=2,BC= A是以A为圆心,半径r=1的圆,若⊙A绕着点B顺时针旋转,旋转角为α( 0°<α<180°);当旋转后的圆与矩形ABCD的边相切时,α=________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的图象如图,则下列结论:①abc0;②a+b+c=2;③b24ac0;④b2a.其中正确的结论是(  )

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形中,,含角()的直角三角板(如图)在图中平移,直角边,顶点分别在边上,延长到点,使,若,则点从点平移到点的过程中,点的运动路径长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是圆O的直径,弦CDAB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AECD的延长线交于点F.

(1)求圆O的半径;

(2)如果AE=6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R)随温度t)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10上升到30的过程中,电阻与温度成反比例关系,且在温度达到30时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1,电阻增加

(1)求当10≤t≤30时,Rt之间的关系式;

(2)求温度在30℃时电阻R的值;并求出t≥30时,Rt之间的关系式;

(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 kΩ?

查看答案和解析>>

同步练习册答案