【题目】如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求点A与点B的坐标;
(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.
(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
【答案】(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)点P的坐标为P(﹣1,4)或(﹣1,).
【解析】
(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,即可求解;
(2)分∠MAO=45°,∠M′AO=45°两种情况,分别求解即可;
(3)分当BD是矩形的边, BD是矩形的边两种情况,分别求解即可.
(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,
故点A、B的坐标分别为:(﹣3,0),(1,0);
(2)抛物线的表达式为:y=(x+3)(x﹣1)①,
当∠MAO=45°时,如图所示,则直线AM的表达式为:y=x②,
联立①②并解得:m=x=4或﹣3(舍去﹣3),故点M(4,7);
②∠M′AO=45°时,
同理可得:点M(﹣2,﹣1);
故:﹣2≤m≤4;
(3)①当BD是矩形的对角线时,如图2所示,
过点Q作x轴的平行线EF,过点B作BE⊥EF,过点D作DF⊥EF,
抛物线的表达式为:y=ax2+2ax﹣3a,函数的对称轴为:x=1,
抛物线点A、B的坐标分别为:(﹣3,0)、(1,0),则点P的横坐标为:1,OB=1,
而CD=4BC,则点D的横坐标为:﹣4,故点D(﹣4,5a),即HD=5a,
线段BD的中点K的横坐标为:,则点Q的横坐标为:﹣2,
则点Q(﹣2,﹣3a),则HF=BE=3a,
∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,
∴∠QBE=∠DQF,
∴△DFQ∽△QEB,则,,解得:a=(舍去负值),
同理△PGB≌△DFQ(AAS),
∴PG=DF=8a=4,故点P(﹣1,4);
②如图3,当BD是矩形的边时,
作DI⊥x轴,QN⊥x轴,过点P作PL⊥DI于点L,
同理△PLD≌△BNQ(AAS),
∴BN=PL=3,
∴点Q的横坐标为4,则点Q(4,21a),
则QN=DL=21a,同理△PLD∽△DIB,
∴,即,解得:a=(舍去负值),
LI=26a=,故点P(﹣1, );
综上,点P的坐标为:P(﹣1,4)或(﹣1, ).
科目:初中数学 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据《北京晚报》介绍,自2009年故宫博物院年度接待观众首次突破1000万人次之后,每年接待量持续增长,到2018年突破1700万人次,成为世界上接待量最多的博物馆.特别是随着《我在故宫修文物》、《上新了,故宫》等一批电视文博节目的播出,社会上再次掀起故宫热.于是故宫文创营销人员为开发针对不同年龄群体的文创产品,随机调查了部分参观故宫的观众的年龄,整理并绘制了如下统计图表.
2018年参观故宫观众年龄频数分布表
年龄x/岁 | 频数/人数 | 频率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合计 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)补全频数分布直方图;
(3)从数据上看,年轻观众(20≤x<40)已经成为参观故宫的主要群体.如果今年参观故宫人数达到2000万人次,那么其中年轻观众预计约有 万人次.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了拆除震后危楼,抗震减灾工作组对所剩部分危楼楼房进行摸排测量.在危楼楼角B点处,测得危楼楼顶A的仰角为60°;沿楼角B点的正前方前进8米到达点C,在离C点2米高的D处测得危楼楼顶A的仰角为30°.请根据以上测量数据,求出楼顶A离地面的高度.(≈1.7,精确到1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坡顶处的同一水平面上有一座古塔,数学兴趣小组的同学在斜坡底处测得该塔的塔顶的仰角为,然后他们沿着坡度为的斜坡攀行了米,在坡顶处又测得该塔的塔顶的仰角为.求古塔的高度.(结果精确到米,参考数据: , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】华为手机与苹果手机受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.
(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?
(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周每张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a()的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+bx+c的图象经过点A(2,0),B(5,0),过点D(0,)作y轴的垂线DP交图象于E、F.
(1)求b、c的值和抛物线的顶点M的坐标;
(2)求证:四边形OAFE是平行四边形;
(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com