【题目】(1)(模型建立)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED与D,过B作BE⊥ED于E,求证:△BEC≌△CDA;
(2)(模型应用):已知直线与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;
【答案】(1)证明见解析;(2)y=x+3
【解析】
(1)由条件可求得∠EBC=∠ACD,利用AAS可证明△BEC≌△CDA;(2)过C作CD⊥x轴于点D,由直线解析式可求得A、B的坐标,利用模型结论可得CD=BO,BD=AO,从而可求得C点坐标,利用待定系数法可求得直线AC的解析式
证明:(1)∵AD⊥ED, BE⊥ED
∴∠E=∠D=90°
又∵∠ACB=90°,
∴∠EBC+∠BCE=∠BCE+∠ACD=90°,
∴∠EBC=∠ACD,
在△BEC和△CDA中,
∴△BEC≌△CDA(AAS);
(2)如图,过C作CD⊥x轴于点D,
直线与y轴交于A点,与x轴交于B点,
令y=0可求得x=-4,令x=0可求得y=3,
∴OA=3,OB=4,
同(1)可证得△CDB≌△BAO,
∴CD=BO=4,BD=AO=3,
∴OD=4+3=7,
∴C(-7,4),且A(0,3),
设直线AC解析式为y=kx+3,把C点坐标代入可得4=-7k+3,解得k=
∴直线AC解析式为y=x+3
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.
(1)求出k,b及m的值.
(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.
(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是,求:
一次函数的解析式;(2)的面积.
根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.
(2)已知四边形ABCD,连接AC、BD交于O,且满足条件:AB+CD=AD+BC,AB2+AD2=BC2+DC2,请探究AC与BD的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的网格纸中,建立了平面直角坐标系,点,点,,.
以点为对称中心,画出,使与关于点对称,并写出下列点的坐标:________,________;
多边形的面积是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com