精英家教网 > 初中数学 > 题目详情

【题目】开学初,为丰富教师们的业余生活,我校组织所有教师前往重庆大剧院观看演出。重庆大剧院的演出门票价格方案如下:1.票价根据座位区域不同定价不同,一区票价为120/张,二区票价为100/张;2.离退休教师各区均享受八折优惠。已知本次活动实到教师700人,若本次活动每人均购买二区票则需67200元。

1)求参加本次活动的在职教师、离退休教师分别有多少人;

2)为庆祝重阳节,重庆在大剧院调整了票价方案,将200张一区演出票票价每张降低了元,将全部二区演出票票价每张降低了元,离退休教师可在降价后仍享受八折优惠。若学校决定将200张一区演出票全部购入并优先发放给离退休教师和部分在职教师,其余教师均购买二区票,且校方希望总门票费用不超过66420元,求的最小值。

【答案】1)在职教师560人,则离退休教师140人;(25

【解析】

1)设在职教师x人,则离退休教师(700-x)人,根据题意列方程求解;(2)根琚题意,一区票价为(120-2a)元/张,二区票价为(100-a)元/张,则校方购买140张降价后享受八折的一区票,60张降价后的一区票,500张降价后的二区票,根据题意列出不等式,然后求解.

解:(1)设在职教师x人,则离退休教师(700-x)人,根据题意:

解得:

700-560=140

答:在职教师560人,则离退休教师140人;

(2)由题意可得:降价后,一区票价为(120-2a)元/张,二区票价为(100-a)元/

解得:

的最小值为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,2BD=3DCEAC的中点,如SABC=10,则SADE=( )

A.5B.4 C.3 D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在等边△ABC中, AB=DE分别是ABBC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1AD1的交点为P

(1)判断△BDE的形状;

(2)在图2中补全图形,

①猜想在旋转过程中,线段CE1AD1的数量关系并证明;

②求∠APC的度数;

(3)点PBC所在直线的距离的最大值为________.(直接填写结果)

图2 备用

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂家以AB两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰中,于点,点延长线上一点,点是线段上一点,.下列结论:①;②;③是等边三角形;④.其中正确结论的个数是( )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC

⑴求∠ECD的度数;

⑵若CE=5,求CB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OAO恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:

(1)柱子OA的高度是多少米?

(2)喷出的水流距水平面的最大高度是多少米?

(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店为吸引顾客设计了促销活动:在一不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客一次性消费满400,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费400,则该顾客获得的金额不低于30元的概率是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案