【题目】阅读:多项式当取某些实数时,是完全平方式.
例如:时,, 发现: ;
时,,发现:;
时,, 发现:;
……
根据阅读解答以下问题:
分解因式:
若多项式是完全平方式,则之间存在某种关系,用等式表示之间的关系:
在实数范围内,若关于的多项式是完全平方式,求值.
求多项式:的最小值.
【答案】(1)(4x-3)2;(2)b2=4ac;(3)m=±20;(4)2.
【解析】
(1)利用完全平方公式分解;
(2)利用题目中解题的规律求解;
(3)利用(2)中规律得到m2=4×4×25,然后解关于m的方程即可;
(4)利用配方法得到x2+y2-4x+6y+15=(x-2)2+(y+3)2+2,然后利用非负数的性质确定代数式的最小值.
(1)16x2-24x+9=(4x-3)2;
(2)b2=4ac;
故答案为(4x-3)2;b2=4ac;
(3)因为m2=4×4×25,
所以m=±20;
(4)x2+y2-4x+6y+15=(x-2)2+(y+3)2+2,
因为(x-2)2≥0,(y+3)2≥0,
所以当x=2,y=-3时,x2+y2-4x+6y+15有最小值2.
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是( )
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现场学习题:
问题背景:
在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上. .
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为a,2a、a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是: .
探索创新:
(3)若△ABC三边的长分别为、、(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种品牌电脑,四月份营业额为万元.为扩大销售,在五月份将每台电脑按原价折销售,销售量比四月份增加台,营业额比四月份多了千元.
求四月份每台电脑的售价.
六月份该商店又推出一种团购促销活动,若购买不超过台,每台按原价销售:若超过台,超过的部分折销售,要想在六月份团购比五月份团购更合算,则至少要买多少台电脑?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,,,点、分别是轴和轴上的一动点.
(1)如图,若点的横坐标为,求点的坐标;
(2)如图,交轴于,平分,若点的纵坐标为,,求点的坐标.
(3)如图,分别以、为直角边在第三、四象限作等腰直角和等腰直角,交轴于,若,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.
(1)求抛物线的解析式;
(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;
(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度为200米,点A、B、C在同一直线上,则AB两点间的距离是________米(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com