【题目】如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.
(1)求抛物线的解析式;
(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;
(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.
【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).
【解析】
(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可;
(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;
(3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可.
(1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,
解得,抛物线的解析式为y=x2﹣3x﹣4;
(2)∵平移直线l经过原点O,得到直线m,
∴直线m的解析式为y=x.
∵点P是直线1上任意一点,
∴设P(3a,a),则PC=3a,PB=a.
又∵PE=3PF,
∴.
∴∠FPC=∠EPB.
∵∠CPE+∠EPB=90°,
∴∠FPC+∠CPE=90°,
∴FP⊥PE.
(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.
∵CF=3BE=18﹣3a,
∴OF=20﹣3a.
∴F(0,20﹣3a).
∵PEQF为矩形,
∴,,
∴Qx+6=0+a,Qy+2=20﹣3a+0,
∴Qx=a﹣6,Qy=18﹣3a.
将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).
∴Q(﹣2,6).
如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.
∵CF=3BE=3a﹣18,
∴OF=3a﹣20.
∴F(0,20﹣3a).
∵PEQF为矩形,
∴,,
∴Qx+6=0+a,Qy+2=20﹣3a+0,
∴Qx=a﹣6,Qy=18﹣3a.
将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).
∴Q(2,﹣6).
综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).
科目:初中数学 来源: 题型:
【题目】等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F,
(1)如图1,求∠AFB的度数;
(2)如图2,连接FC,若∠BFC=90°,点G为边 AC上一点,且满足∠GFC=30°,求证:AG⊥BG;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:
(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;
(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:多项式当取某些实数时,是完全平方式.
例如:时,, 发现: ;
时,,发现:;
时,, 发现:;
……
根据阅读解答以下问题:
分解因式:
若多项式是完全平方式,则之间存在某种关系,用等式表示之间的关系:
在实数范围内,若关于的多项式是完全平方式,求值.
求多项式:的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点的坐标为,点在轴上,将沿轴负方向平移,平移后的图形为,且点的坐标为.
直接写出点的坐标;
在四边形中,点从点出发,沿移动,若点的速度为每秒个单位长度,运动时间为秒,回答下列问题:
_ ___秒时,点的横坐标与纵坐标互为相反数;
用含有的式子表示点的坐标.
当秒秒时,设探索之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.设通道的宽度为x米.
(1)a= (用含x的代数式表示);
(2)若塑胶运动场地总占地面积为 2430平方米,则通道的宽度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C. D重合),且∠EAC=2∠EBC.
(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=___°,∠AEC=___°.
(2)如图2,①求证:AE+AC=BC;
②若∠ECB=30°,且AC=BE,求∠EBC的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上小明用一副三角板进行如下操作:把一副三角板中两个直角的顶点重合,一个三角板固定不动,另一个三角板绕着重合的顶点旋转(两个三角板始终有重合部分).
(1)当旋转到如图所示的位置时,量出∠α=25°,通过计算得出∠AOD=∠BOC= ;
(2)通过几次操作小明发现,∠α≠25°时.∠AOD=∠BOC仍然成立,请你帮他完成下面的说理过程.
理由:因为∠AOC=∠BOD= ;
所以,根据等式的基本性质∠ ﹣∠COD=∠BOD﹣∠ ;
即∠AOD=∠ .
(3)小莹还发现在旋转过程中∠AOB和∠DOC之间存在一个不变的数量关系,请你用等式表示这个数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AC∥BD,请先作图再解决问题.
(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)
①作BE平分∠ABD交AC于点E;
②在BA的延长线上截取AF=BA,连接EF;
(2)判断△BEF的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com