【题目】已知抛物线y=-x2+4交x轴于A,B两点,顶点是C.
(1)求△ABC的面积;
(2)若点P在抛物线y=-x2+4上, 且S△PAB= S△ABC,求点P的坐标。
【答案】(1)8;(2)点P的坐标为:(,2),(-,2),(,-2),(-,-2).
【解析】
(1)根据抛物线的性质得到A(-2,0),B(2,0),C(0,4),所以△ABC是底边为4,高为4的等腰三角形,利用三角形的面积公式可以求出三角形的面积.
(2)根据△PAB的面积是△ABC的面积的一半,得到点P的纵坐标为±2,然后代入抛物线可以求出点P的横坐标,确定点P的坐标.
(1)A(-2,0),B(2,0),C(0,4).
∴S△ABC=×4×4=8.
所以△ABC的面积是8.
(2)∵S△PAB=S△ABC
∴点P的纵坐标为±2,
当y=2时,代入抛物线有:2=-x2+4,得:x=±.
当y=-2时,代入抛物线有:-2=-x2+4,得:x=±.
所以点P的坐标为:(,2),(-,2),(,-2),(-,-2).
科目:初中数学 来源: 题型:
【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x(x60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,且销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,给出下列4个结论:①abc>0; ②b2>4ac; ③4a+2b+c>0;④2a+b=0.其中正确的有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标 ;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.
(1)求证:四边形AFCE是菱形;
(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的顶点P的横坐标为,且与y轴交于点C(0,-4).
(1)求b,c的值;
(2)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧)点M关于y轴的对称点为点M,点H的坐标为(3,0).若四边形ONMH的面积为18.求点H到OM的距离;
(3)是否在对称轴的同侧存在实数m、n(m<n),当 时,y的取值范围为 ?若存在,求出m,n的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt中,AB=BC=4,,将一直角三角板的直角顶点放在斜边AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.
(1)直角三角板绕点P旋转过程中,当______时,是等腰三角形;
(2)直角三角板绕点P旋转到图(1)的情形时,求证:PD=PE;
(3)如图(3),若将直角三角板的顶点放在斜边AC的点M处,设(、为正数),求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售面向中考生的计数跳绳,每根成本为20元,销售的前40天内的日销售量m(根)与时间t(天)的关系如表.
时间t(天) | 1 | 3 | 8 | 10 | 26 | … |
日销售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
前40天每天的价格y(元/件)与时间t(天)的函数关系式为:y=t+25(1≤t≤40且t为整数);
(1)认真分析表中的数据,用所学过的知识确定m(件)与t(天)之间是满足一次函数的关系还是二次函数的关系?并利用这些数据求m(件)与t(天)之间得函数关系式;
(2)请计算40天中哪一天的日销售利润最大,最大日销售利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com