【题目】已知:如图,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.
(1)求证:∠FGC=∠B;
(2)延长CE与DA的延长线交于点H,求证:BECH=AFAC.
【答案】(1)见解析;(2)见解析.
【解析】
(1)先利用菱形的性质判断△ABC为等边三角形得到∠B=∠BAC=60°,再证明△ABF≌△CAE得到∠BAF=∠ACE,然后利用角度代换可得到结论;
(2)如图,先证明△BCE∽△DHC得到,然后利用等线段代换可得到结论.
(1)∵四边形ABCD为菱形,
∴AB=BC,
而AB=AC,
∴AB=BC=AC,
∴△ABC为等边三角形,
∴∠B=∠BAC=60°,
在△ABF和△CAE中
,
∴△ABF≌△CAE(SAS),
∴∠BAF=∠ACE,
∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,
∴∠FGC=∠B;
(2)如图,
∵四边形ABCD为菱形,
∴∠B=∠D,AD∥BC,
∴∠BCE=∠H,
∴△BCE∽△DHC,
,
∵△ABF≌△CAE,
∴CE=AF
∵CA=CB=CD,
∴,
∴BECH=AFAC.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线 与双曲线 相交于A、B两点,且A点横坐标为2,C是第一象限内双曲线上一点,连接CA并延长交y轴于点D,连接BD,BC.
(1)k的值是________;
(2)若AD=AC,则△BCD的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.
(1)请证明△APQ为PQ边上的“半高”三角形.
(2)请探究BM,PM,CN之间的等量关系,并说明理由;
(3)若△ABC的面积等于16,求MQ的最小值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象与反比例函数y= (x<0)的图象相交于点A(-1,2)、点B(-4,n).
(1)求此一次函数和反比例函数的表达式;
(2)求△AOB的面积;
(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是( )
A. 4<OC≤B. 4≤OC≤C. 4<OCD. 4≤OC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6,BC=8,点E是边CD上的点,且CE=4,过点E作CD的垂线,并在垂线上截取EF=3,连接CF.将△CEF绕点C按顺时针方向旋转,记旋转角为a.
(1)问题发现
当a=0°时,AF= ,BE= ,= ;
(2)拓展探究
试判断:当0°≤a°<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△CEF旋转至A,E,F三点共线时,直接写出线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,D为抛物线对称轴上一动点,求D运动到什么位置时△DAC的周长最小;
(3)如图2,点E在第一象限抛物线上,AE与BC交于点F,若AF:FE=2:1,求E点坐标;
(4)点M、N同时从B点出发,分别沿BA、BC方向运动,它们的运动速度都是1个单位/秒,当点M运动到点A时,点N停止运动,则当点N停止运动后,在x轴上是否存在点P,使得△PBN是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com