| A. | 50° | B. | 60° | C. | 70° | D. | 不确定 |
分析 过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.
解答 解:如图:![]()
过D作DE⊥OM于E,DF⊥ON于F,
则∠DEB=∠DFC=∠DFO=90°,
∵∠MON=130°,
∴∠EDF=360°-90°-90°-130°=50°,
∵DE⊥OM,DF⊥ON,OD∠MON,
∴DE=DF,
∵P为BC中点,DP⊥BC,
∴BD=CD,
在Rt△DEB和Rt△DFC中,
$\left\{\begin{array}{l}{DB=DC}\\{DE=DF}\end{array}\right.$,
∴Rt△DEB≌Rt△DFC(HL),
∴∠EDB=∠CDF,
∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.
故选A.
点评 本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com