【题目】如图1,在平面直角坐标系中有一Rt△AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线l:y=﹣x2+bx+c经过A、B两点.
(1)求抛物线l的解析式及顶点G的坐标.
(2)①求证:抛物线l经过点C.
②分别连接CG,DG,求△GCD的面积.
(3)在第二象限内,抛物线上存在异于点G的一点P,使△PCD与△CDG的面积相等,请直接写出点P的坐标.
【答案】
(1)
解:∵OA=1,
∴A(1,0).
又∵tan∠BAO= =3,
∴OB=3.
∴B(0,3).
将A(1,0)、B(0,3)代入抛物线的解析式得: ,解得:b=﹣2,c=3.
∴抛物线的解析式为y=﹣x2﹣2x+3.
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点G的坐标为(﹣1,4)
(2)
解:①证明:由旋转的性质可知;OC=OB=3,
∴C(﹣3,0).
当x=﹣3时,y=﹣(﹣3)2﹣2×(﹣3)+3=﹣9+6+3=0,
∴点抛物线l经过点C.
②如图1所示;过点G作GE⊥y轴.
∵GE⊥y轴,G(﹣1,4),
∴GE=1,OE=4.
∴S梯形GEOC= (GE+OC)OE= ×(1+3)×4=8.
∵由旋转的性质可知;OD=OA=1,
∴DE=3.
∴S△OCD= OCOD= ×3×1= ,S△GED= EGED= ×1×3= .
∴S△CDG=S梯形GEOC﹣S△OCD﹣S△GED=8﹣ ﹣ =5
(3)
解:如图2所示:过点G作PG∥CD,交抛物线与点P.
∵PG∥CD,
∴△PCD的面积=△GCD的面积.
∵OD=OA=1,
∴D(0,1).
设直线CD的解析式为y=kx+b.
∵将点C(﹣3,0)、D(0,1)代入得: ,解得:k= ,b=1,
∴直线CD的解析式为y= +1.
∵PG∥CD,
∴直线PG的一次项系数为 .
设PG的解析式为y= x+b1.
∵将点G的坐标代入得: +b1=4,解得:b1= ,
∴直线PG的解析式为y= + .
∵将y= + 与y=﹣x2﹣2x+3联立.解得: , ,
∴P(﹣ , )
【解析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式,可求得b、c的值,从而可得到抛物线的解析式,最后依据配方法可求得点G的坐标(2)由旋转的性质可求得点D和点C的坐标,将点C的横坐标代入抛物线的解析式求得y=0,从而可证明点抛物线l经过点C;如图1所示;过点G作GE⊥y轴,分别求得梯形GEOC、△OCD、△GED的面积,最后依据S△CDG=S梯形GEOC﹣S△OCD﹣S△GED求解即可;(3)如图2所示:过点G作PG∥CD,交抛物线与点P.先求得直线CD的解析式,然后可得到直线PG的一次项系数,然后由点G的坐标可求得PG的解析式,最后将直线PG的解析式与抛物线的解析式联立,最后解得点P的坐标即可.
科目:初中数学 来源: 题型:
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5. 月信息消费额分组统计表
组别 | 消费额(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
请结合图表中相关数据解答下列问题:
(1)这次接受调查的有户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是;
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣ (x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.
(1)求k的值;
(2)求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于 BD的所有的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对△ABC纸片进行如下操作: 第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1 , 然后还原纸片;
第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2 , 然后还原纸片;
…
按上述方法不断操作下去…,经过第n次操作后得到的折痕DnEn到BC的距离记作hn , 若h=1,则hn的值不可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题
如图1,等边△ABC中,BC=4,点P从点B出发,沿BC方向运动到点C,点P关于直线AB、AC的对称点分别为点M、N,连接MN.
(1)【发现】
当点P与点B重合时,线段MN的长是 .
当AP的长最小时,线段MN的长是;
(2)【探究】
如图2,设PB=x,MN2=y,连接PM、PN,分别交AB,AC于点D,E.
用含x的代数式表示PM= , PN=;
(3)求y关于x的函数关系式,并写出y的取值范围;
(4)当点P在直线BC上的什么位置时,线段MN=3 (直接写出答案)
(5)【拓展】
如图3,求线段MN的中点K经过的路线长.
(6)【应用】
如图4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,则△PQR周长的最小值是 .
(可能用到的数值:sin75°= ,cos75°= ,tan75°=2+ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)请将两幅不完整的统计图补充完整;
(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?
(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com