【题目】如图,已知抛物线y=ax2+bx+3与x轴交于A.B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由.
【答案】(1)抛物线的解析式为;(2)抛物线的对称轴上存在点D(2,1),使△BCD的周长最小
【解析】
(1)将点A,C代入解析式中即可得到抛物线的解析式;
(2)因为BC的长度不变,要使周长最小,就是DB+DC最小,而A,B关于对称轴对称,所以AC就是DB+DC的最小值,此时D点就是AC与抛物线对称轴的交点.先用待定系数法求出直线AC的解析式,再求出抛物线的对称轴,即可求出交点.
(1)将代入y=ax2+bx+3中得
解得
∴抛物线的解析式为
(2)设直线AC的解析式为
将代入得
解得
∴直线AC的解析式为
抛物线的对称轴为
因为BC的长度不变,要使周长最小,就是DB+DC最小,而A,B关于对称轴对称,所以AC就是DB+DC的最小值,此时D点就是AC与抛物线对称轴的交点.
当时,
∴点D的坐标为(2,1)
∴抛物线的对称轴上存在点D(2,1),使△BCD的周长最小
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有错误的结论有( )个.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴的两个交点分别为,,与轴相交于点.
(1)求抛物线的表达式;
(2)联结、,求的正切值;
(3)点在抛物线上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件元的价格购进一种商品,试销中发现这种商品每天的销售量(件)与每件的销售价(元)满足一次函数关系.
(1)求商场销售这种商品每天的销售利润 (元)与每件销售价(元)之间的函数关系式.
(2)商场每天销售这种商品的销售利润能否达到元?如果能,求出此时的销售价格;如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.
(1)求证:;
(2)过点E作交PB于点F,连结AF,当时,①求证:四边形AFEP是平行四边形;
②请判断四边形AFEP是否为菱形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E在AC上,且∠ADE=∠B.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com