精英家教网 > 初中数学 > 题目详情
14.如图,A、B两村和一条小河,要在河边L建一水厂Q向两村供水,若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述情况下的自来水厂厂址标出,并保留作图痕迹.

分析 作出点A关于直线l的对称点A′,连接A′B,交直线l于点Q,AQ+QB使自来水厂到两村的输水管用料最省,点Q为所求的点.

解答 解:如图所示:做出点A关于直线l的对称点A′,连接A′B,交直线l于点Q,此时AQ+QB最短,
则Q为所求的点.

点评 此题考查了轴对称-最短线路问题,作图-应用与设计作图,熟练掌握对称的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,平面直角坐标系中,点P的坐标是(3,4),直线l经过点P且平行于y轴,点Q从点A(3,10)出发,以每秒1个单位长的速度沿AP方向匀速运动.回答下列问题:
(1)当t为何值时,△POQ的面积为6?
(2)当t为何值时,△POQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先阅读下列的解答过程,然后再解答:
阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2.那么x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.
例如:已知方程2x2+3x-5=0的两根分别为x1、x2
则:x1+x2=-$\frac{b}{a}$=-$\frac{3}{2}$,x1、x2=$\frac{c}{a}$=$\frac{-5}{2}$=-$\frac{5}{2}$
请同学阅读后完成以下问题:
(1)已知方程3x2-4x-6=0的两根分别为x1、x2,求x1+x2和x1x2的值.
(2)已知方程3x2-4x-6=0的两根分别为x1、x2,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的值.
(3)若一元二次方程2x2+mx-3=0的一根大于1,另一根小于1,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知一次函数y=2x-3.
(1)在给定的直角坐标系内作出它的图象;
(2)求它的图象与两坐标轴的交点坐标及两坐标轴所围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知△ABC的三边为a、b、c,且a+b=7,ab=12,c=5,试判定△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.手工课上,小明准备做个形状是菱形的风筝,这个菱形两条对角线长度之和恰好为60cm,菱形的面积为S,随其中一条对角线的长x的变化而变化.
①求S与x之间的函数关系式(不要求写出取值范围)
②当x是多少时,菱形风筝的面积S最大?最大的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知y=$\sqrt{x-4}$+$\sqrt{4-x}$+3,则(y-x)2009=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,四边形ABCD的对角线AC和BD相交于点E,如果△CDE的面积为3,△BCE的面积为4,△AED的面积为6,那么△ABE的面积为8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.某校为了解学生的课余爱好,对全校1200名学生进行抽样调查,并把调查结果制成如图所示的统计图,由图可知,该校喜欢舞蹈的学生大约有120名.

查看答案和解析>>

同步练习册答案