【题目】(本题满分10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E, ∠BAC=∠CDF.
(1)求证BC=2CE;
(2)求证AM=DF+ME.
【答案】(1)BC= 2CE(2)AM=DF+ME
【解析】
试题(1)由条件可证得CE=DE,结合菱形的性质可证得BC=2CE;
(2)分别延长AB、DF交于点G,可证△CDF≌△BGF,则可证得GF=DF,结合条件可证得AM=GM,MF=ME,则可证得结论.
试题解析:(1)∵四边形ABCD为菱形,
∴AB∥CD,且BC=CD,
∴∠BAC=∠ACD,且∠BAC=∠CDF,
∴∠ACD=∠CDF,
∴CM=DM,
∵ME⊥CD,
∴CE=DE,
∴BC=CD=2CE;
(2)如图,分别延长AB,DF交于点G,
∵AB∥CD,
∴∠G=∠CDF=∠BAC,
∴MG=MA,
在△CDF和△BGF中,,
∴△CDF≌△BGF(AAS),
∴GF=DF,
在△CEM和△CFM中,,
∴△CEM≌△CFM(SAS),
∴ME=MF,
∴AM=GM=GF+MF=DF+ME.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”,如图为点、的“极好菱形”的一个示意图。
(1)点,,中,能够成为点、的“极好菱形”的顶点的是_______.
(2)若点、的“极好菱形”为正方形,则这个正方形另外两个顶点的坐标是________.
(3)如果四边形是点、的“极好菱形”
①当点的坐标为时,求四边形的面积
②当四边形的面积为,且与直线有公共点时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张长为a、宽为b的长方形纸片上,剪掉一个大圆和两个半径相等的小圆.
(1)列出剩余纸片(图中阴影部分)面积的代数式;(结果要求化简)
(2)当a=6cm,b=4cm时,求阴影部分的面积,(π取3.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点O为原点,边OA的长度为8,对角线AC=10,抛物线y=x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式并求出S最大时的m值;
②在S最大的情况下,在抛物线y=x2+bx+c的对称轴上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料并填空
(1)探究:平面上有n个点(n>2)且任意3个点不在同一条直线上,经过每两个点画一条直线,一共能画多少条直线? 根据基本事实,我们知道两点确定一条直线,平面上有2个点时,可以画条直线,平面内有3个不在同一直线上点时,可画条直线,那么平面上有4个不在同一直线上的点时,可以画 条, 平面上有5个不在同一直线上的点时,可以画 条,以此类推,平面上有n个不在同一直线上的点时,可以画 条
(2)运用:某足球比赛中有10个球队进行单循环比赛(每两队之间必须比赛一场),一共进行多少场比赛?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的中位数是 分,众数是 分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com