【题目】如图,在矩形OABC中,点O为原点,边OA的长度为8,对角线AC=10,抛物线y=x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式并求出S最大时的m值;
②在S最大的情况下,在抛物线y=x2+bx+c的对称轴上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
【答案】(1)y=x+x+8 (2)①m=5②F1(,8),F2(,4), (,6+) , (,6-).
【解析】分析:(1)先根据勾股定理求出OC长度,进而确定点C坐标;将A、C两点坐标代入抛物线y=x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②分类讨论,写出满足条件的F点的坐标即可,注意不要漏写.
详解:(1)在矩形OABC中,∠AOC=90°,
由勾股定理可得,OC=,∴C(6,0),
将A(0,8)、C(6,0)两点坐标代入抛物线,得
,
解得, ,
∴抛物线的解析式为;
(2)如图:①过点Q作QE⊥BC与E点,则sin∠,
∴,
∴QE=(10﹣m),
∴S=,
∵S=,
∴当m=5时,S取最大值;
②在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2, ,
解得,n=,
∴F3(, ),F4(, ),
综上所述,满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(, ),F4(, ).
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中有对角线AC与BD相等,已知AB=4,BC=3,则有AB2+BC2=AC2,矩形在直线MN上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转至图②位置……依次类推,则:
(1)AC=__________.
(2)这样连续旋转2019次后,顶点B在整个旋转过程中所经过的路程之和是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.
(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?
(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:
如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为__________;
(2)深入探究:
如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC、BD交于点O,BE平分∠ABC交AC于点F,交AD于点E,且∠DBF=15°,求证:(1)AO=AE; (2)∠FEO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E, ∠BAC=∠CDF.
(1)求证BC=2CE;
(2)求证AM=DF+ME.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板按图 1 所示的位置摆放,将△DEF 绕点 A(F)逆时针旋转 60°后(图 2), 测得 CG=8cm,则两个三角形重叠(阴影)部分的面积为()
A. 16+16 cm2
B. 16+ cm2
C. 16+ cm2
D. 48cm2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com