【题目】在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.
【答案】39
【解析】
由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.
由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,
最底层几何体最多正方体的个数为:4×4=16,
由主视图和左视图可得第二层最多正方体的个数为:4×4=16;
由主视图和左视图可得第3层最多正方体的个数为:3×2=6;
由主视图和左视图可得第4层最多正方体的个数为:1;
16+16+6+1=39(件).
故这正方体快递件最多有39件.
故答案为:39.
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.
(1)求证:四边形BFDE是平行四边形;
(2)若∠AEB=68°,求∠C.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”,如图为点、的“极好菱形”的一个示意图。
(1)点,,中,能够成为点、的“极好菱形”的顶点的是_______.
(2)若点、的“极好菱形”为正方形,则这个正方形另外两个顶点的坐标是________.
(3)如果四边形是点、的“极好菱形”
①当点的坐标为时,求四边形的面积
②当四边形的面积为,且与直线有公共点时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y ,y (千米)与行驶时间x(小时)之间的函数关系图象。
(1)填空:A,B两地相距___千米;货车的速度是___千米/时。
(2)求两小时后,货车离C站的路程y 与行驶时间x之间的函数表达式;
(3)客、货两车何时距离不大于30km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张长为a、宽为b的长方形纸片上,剪掉一个大圆和两个半径相等的小圆.
(1)列出剩余纸片(图中阴影部分)面积的代数式;(结果要求化简)
(2)当a=6cm,b=4cm时,求阴影部分的面积,(π取3.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点O为原点,边OA的长度为8,对角线AC=10,抛物线y=x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式并求出S最大时的m值;
②在S最大的情况下,在抛物线y=x2+bx+c的对称轴上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的中位数是 分,众数是 分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com