【题目】某学校为了解今年八年级学生足球运球的掌握情况,随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按A、B、C、D四个等级进行如图不完整的统计图根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图、扇形统计图;
(3)该校八年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
【答案】(1)117;(2)详见解析;(3)30人.
【解析】
(1)先由B等级人数及其所占百分比求出总人数,由各等级人数之和等于总人数得出C等级人数,从而可用360°乘以C等级人数占总人数的比例即可得;
(2)由各等级人数之和等于总人数得出C等级人数,根据百分比概念求出A、C等级对应的百分比,由百分比之和等于1求出D等级对应的百分比,从而补全图形;
(3)用总人数乘以样本中A等级对应的百分比即可得.
解:(1)18÷45%=40,
即在这次调查中一共抽取了40名学生,
在扇形统计图中,C对应的扇形的圆心角是:360°×=117°,
故答案为:117;
(2)C等级的人数为:40﹣4﹣18﹣5=13,
A等级对应的百分比为×100%=10%,C等级对应的百分比为×100%=32.5%,
则D等级对应的百分比为1﹣(10%+45%+32.5%)=12.5%,
补全图形如下:
(3)估计足球运球测试成绩达到A级的学生有300×10%=30(人).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线 交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥DC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=_____,若S=S1+S2+S3+…+Sn,当n无限大时,S的值无限接近于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
信息读取
(1)梯形上底的长AB= ;
(2)直角梯形ABCD的面积= ;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A. 平均数为160 B. 中位数为158 C. 众数为158 D. 方差为20.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
(阅读材料)
在数轴上,通常用“两数的差”来表示“数轴上两点的距离”如图1中三条线段的
长度可表示为:,结论:数轴上任意两点
表示的数为分别,则这两个点间的距离为(即:用较大的数去减较小的数)
(理解运用)
根据阅读材料完成下列各题:
(1)如图2, 分别表示数,求线段的长;
(2)若在直线上存在点,使得,求点对应的数值.
(3)两点分别从同时出发以3个单位、2个单位长度的速度沿数轴向右运动,求当点重合时,它们运动的时间;
(4)在(3)的条件下,求当时,它们运动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx(k>0)与双曲线交于A、B两点,且点A的纵坐标为4,第一象限的双曲线上有一点,过点P作PQ//y轴交直线AB于点Q.
(1)直接写出k的值及点B的坐标:
(2)求线段PQ的长;
(3)如果在直线y=kx上有一点M,且满足△BPM的面积等于12,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x+b的图象与反比例函数(x>0)的图象交于点A(m,2),与坐标轴分别交于B和C(0,-2)两点.
(1)求反比例函数的表达式;
(2)若P是y轴上一动点,当PA+PB的值最小时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com