16£®Èçͼ1£¬Ö±ÏßAD¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îªy=-2x-2£¬ÓëÅ×ÎïÏß½»ÓÚµãA£¨ÔÚxÖáÉÏ£©£¬µãD£®Å×ÎïÏßÓëxÖáÁíÒ»½»µãΪB£¨3£¬0£©£¬Å×ÎïÏßÓëyÖá½»µãC£¨0£¬-6£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬Á¬½áCD£¬¹ýµãD×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãE£¬Ö±ÏßADÓëyÖá½»µãΪF£¬ÈôµãPÓɵãD³ö·¢ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØDE±ßÏòµãEÒÆ¶¯£¬1ÃëºóµãQÒ²ÓɵãD³ö·¢ÒÔÿÃë3¸öµ¥Î»µÄËÙ¶ÈÑØDC£¬CO£¬OE±ßÏòµãEÒÆ¶¯£¬µ±ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱÁíÒ»¸öµãÒ²Í£Ö¹ÒÆ¶¯£¬µãPµÄÒÆ¶¯Ê±¼äΪtÃ룬µ±PQ¡ÍDFʱ£¬ÇótµÄÖµ£»
£¨3£©Èçͼ3£¬µãMÊÇÅ×ÎïÏßÉϵ͝µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹A¡¢D¡¢M¡¢NÕâËĸöµãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èç¹û´æÔÚ£¬Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄNµã×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öµãA×ø±ê£¬°ÑA¡¢B¡¢CÈýµã´úÈëÅ×ÎïÏß½âÎöʽ½â·½³Ì×é¼´¿É£®
£¨2£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢Ùµ±QµãÔÚCDÉÏʱ¢ÚµãQÔÚCOÉÏʱ¢ÛµãQÔÚOEÉÏʱ£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊ·³Ì·½³ÌÇó³öt£¬²¢ÇÒÅжÏÊÇ·ñ·ûºÏÌâÒâ¼´¿É£®
£¨3£©Èçͼ4ÖÐÓÐËÄÖÖÇéÐΣ¬·Ö±ð¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ»òÀûÓÃÒ»´Îº¯ÊýµÄÐÔÖʽâ¾ö£®

½â´ð ½â£º£¨1£©Áîy=0£¬Ôò-2x-2=0£¬½âµÃx=-1£¬ËùÒÔµãA×ø±ê£¨-1£¬0£©£¬
ÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
¡ßA£¨-1£¬0£©¡¢B£¨3£¬0£©¡¢C£¨0£¬-6£©ÔÚÅ×ÎïÏßÉÏ£¬
¡à$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c+0}\\{c=-6}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=-4}\\{c=-6}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=2x2-4x-6£®
£¨2£©y=2x-2£¬Áîx=0£¬y=-2£¬¡àF£¨0£¬-2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-2x-2}\\{y=2{x}^{2}-4x-6}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.\\;»ò\left\{\begin{array}{l}{x=2}\\{y=-6}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=-6}\end{array}\right.$£¬
¡àµãD×ø±ê£¨2£¬-6£©£®¡ßµãC£¨0£¬-6£©£¬
¡àCD¡ÍCF£¬
¡à¡ÏDCF=90¡ã£¬
ÓÉÌâÒ⣺PµãÒÆ¶¯µÄ·³ÌΪDP=t£¬QµãÒÆ¶¯µÄ·³ÌΪ3£¨t-1£©=3t-3£¬
µ±QµãÔÚCDÉÏʱ£¬¼´0£¼3t-3¡Ü2ʱ£¬1£¼t¡Ü$\frac{5}{3}$ʱ£¬
Èçͼ1ÖУ¬ÈôPQ¡ÍDF£¬ÔòÓÐRT¡÷QDP¡×RT¡÷FCD£¬

¡à$\frac{PD}{QD}$=$\frac{CD}{CF}$£¬¼´$\frac{t}{3t-3}$=$\frac{1}{2}$£¬
¡àt=3£¬3£¾$\frac{5}{3}$£¬
¡à´Ëʱt²»ºÏÌâÒ⣮
µ±µãQÔÚCOÉÏʱ£¬2£¼3t-3¡Ü8£¬$\frac{5}{3}$£¼t¡Ü$\frac{11}{3}$ʱ£¬Èçͼ2ÖУ¬¹ýµãP×÷PK¡ÍOCÓÚK£¬

¡àCK=PD=t£¬CQ=3£¨t-1£©-2=3t-5£¬
ÈôPQ¡ÍDF£¬ÔòÓÐRT¡÷PKQ¡×RT¡÷FCD£¬
¡à$\frac{QK}{PK}=\frac{CD}{CF}$£¬¼´$\frac{-2t+5}{2}$=$\frac{2}{4}$£¬
¡àt=2£¬¡ß$\frac{5}{3}$£¼t¡Ü$\frac{11}{3}$£¬
¡àt=2·ûºÏÌâÒ⣮
µ±µãQÔÚOEÉÏʱ£¬¼´8¡Ü3t-3¡Ü10£¬$\frac{11}{3}$¡Üt¡Ü$\frac{13}{3}$ʱ£¬Èçͼ3ÖУ¬

ÈôPQ¡ÍDF£¬¹ýµãQ×÷QG¡ÎDF½»DEÓÚG£¬ÔòQG¡ÍQP£¬¼´¡ÏGQP=90¡ã£¬
¡à¡ÏQPE£¾90¡ã£¬ÕâÓë¡÷QPEÄڽǺÍΪ180¡ãì¶Ü£¬´ËʱPQ²»ÓëDF´¹Ö±£¬
×ÛÉÏËùÊö£ºµ±t=2ʱ£¬ÓÐPQ¡ÍDF£®
£¨3£©Èçͼ4ÖУ¬

¢Ùµ±M1N1¡ÎAD£¬AN1¡ÎDM1ʱ£¬AN1=DM1=2£¬´ËʱN1×ø±ê£¨-3£¬0£©£¬
¢Úµ±ADΪ¶Ô½ÇÏßʱ£¬¡ßAN2=DM2=2£¬
¡àµãN2×ø±êΪ£¨1£¬0£©£¬
¢Ûµ±AD¡ÎN3M3£¬AD=M3N3ʱ£¬´ËʱµãM3µÄ×Ý×ø±êΪ6£¬µ±AD¡ÎM4N4£¬AD=M4N4ʱ£¬´ËʱµãM4µÄ×Ý×ø±êΪ6£¬
£¬Áîy=6£¬Ôò2x2-4x-6=6£¬½âµÃx=1$¡À\sqrt{7}$£¬
¡àM3£¨1+$\sqrt{7}$£¬6£©£¬M4£¨1-$\sqrt{7}$£¬0£©£¬
Ö±ÏßM3N3Ϊ£ºy=-2x+8+2$\sqrt{7}$£¬Ö±ÏßM4N4Ϊ£ºy=-2x+8-2$\sqrt{7}$£¬
¡àN3£¨4+$\sqrt{7}$£¬0£©£¬N4£¨4-$\sqrt{7}$£¬0£©£¬
×ÛÉÏËùÊöµãN×ø±êΪ£¨-3£¬0£©£¬£¨1£¬0£©£¬£¨4+$\sqrt{7}$£¬0£©£¬£¨4-$\sqrt{7}$£¬0£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓйØÖªÊ¶£¬Ñ§»á´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬½âÌâµÄ¹Ø¼üÊÇ»á·ÖÀàÌÖÂÛ£¬¼ìÑéÊÇ·ñ·ûºÏÌâÒ⣬µÚÈý¸öÎÊÌâÐèÒª»­³öͼÐΣ¬ÀûÓÃÆ½ÐÐËıßÐεÄÐÔÖÊ»áÒ»´Îº¯ÊýÈ·¶¨µãNµÄ×ø±ê£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐËĸöÃüÌ⣺
¢ÙÁ½µãÖ®¼äÏß¶Î×î¶Ì£»
¢ÚÈý½ÇÐÎÓÐÇÒÖ»ÓÐÒ»¸öÍâ½ÓÔ²£»
¢Û¶Ô½ÇÏßÏàµÈÇÒ»¥Ïà´¹Ö±µÄËıßÐÎÊÇÕý·½ÐΣ»
¢ÜÕýÁù±ßÐεıßÐľàÓë±ß³¤ÏàµÈ£®
ÆäÖÐÊÇÕæÃüÌâµÄÓУ¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ù¢Ú¢ÜD£®¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ð¡Ã÷°ïÖú×öÉúÒâµÄ¸¸Ç×ÕûÀí²Ö¿â£¬ÔÚ²Ö¿âµÄÒ»½ÇÕûÆëµØ¶Ñ·Å×ÅÈô¸É¸öÏàͬµÄÕý·½Ìå»õÏ䣬ÈçͼÊÇСÃ÷»­³öµÄÕâ¶Ñ»õÏäµÄÈýÖÖÊÓͼ£¬Õâ¶ÑÕý·½Ìå»õÏä¹²ÓУ¨¡¡¡¡£©
A£®11ÏäB£®10ÏäC£®9ÏäD£®8Ïä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªnΪÕýÕûÊý£¬ÇÒx2n=4£¬Çó£¨x3n£©2-2£¨x2£©2nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬ÊÇijµØ2ÔÂ18ÈÕµ½23ÈÕPM2.5Ũ¶ÈµÄͳ¼ÆÍ¼£¬ÔòÕâÁùÌìÖÐPM2.5Ũ¶ÈµÄÖÐλÊýÊÇ79.5¦Ìg/m2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=x2+bx+cÓëxÖáÏཻÓÚµãAºÍµãB£¬ÒÑÖªµãAµÄ×ø±êΪ£¨1£¬0£©£¬ÓëyÖáÏཻÓÚµãC£¨0£¬3£©£¬Å×ÎïÏߵĶ¥µãΪP£®
£¨1£©ÇóÕâÌõÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³ö¶¥µãPµÄ×ø±ê£»
£¨2£©Èç¹ûµãDÔÚ´ËÅ×ÎïÏßÉÏ£¬DF¡ÍxÖáÓÚµãF£¬DFÓëÖ±ÏßPBÏཻÓÚµãE£¬ÉèµãDµÄºá×ø±êΪt£¨t£¾3£©£¬ÇÒDE£ºEF=2£º1£¬ÇóµãDµÄ×ø±ê£»
£¨3£©ÔÚµÚ£¨2£©Ð¡ÌâµÄÌõ¼þÏ£¬ÇóÖ¤£º¡ÏDPE=¡ÏBDE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{a}{{a}^{2}-{b}^{2}}-\frac{b}{{a}^{2}-{b}^{2}}$£¬ÆäÖÐa=2£¬b=-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â·½³Ì£º
£¨1£©$\frac{2}{x+1}$-$\frac{1}{x}$=0             
£¨2£©$\frac{x-2}{x+2}$-$\frac{16}{{x}^{2}-4}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»´Îº¯Êýy=kx+b£¨k¡Ù0£©µÄͼÏó¾­¹ýA£¨0£¬-2£©£¬B£¨1£¬0£©Á½µã£¬Óë·´±ÈÀýº¯Êýy=$\frac{m}{x}$£¨m¡Ù0£©µÄͼÏóÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬Èô¡÷OBMµÄÃæ»ýÊÇ2£®
£¨1£©ÇóÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôµãPÊÇxÖáÕý°ëÖáÉÏÒ»µãÇÒ¡ÏAMP=90¡ã£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸