【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB , 垂足为D , AB=c , ∠a=α , 则CD长为( )
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα
【答案】D
【解析】解答:在Rt△ABC中,∠ACB=90°,AB=c , ∠A=α , sinα= ,BC=csinα ,
∠A+∠B=90°,∠DCB+∠B=90°,
∴∠DCB=∠A=α ,
在Rt△DCB中,∠CDB=90°,
cos∠DCB= ,
CD=BCcosα=csinαcosα ,
故选:D.
分析:根据已知条件在Rt△ABC中,用AB和α表示BC,在Rt△DCB中,根据余弦求出CD的长,得到答案 .
【考点精析】利用解直角三角形对题目进行判断即可得到答案,需要熟知解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法).
科目:初中数学 来源: 题型:
【题目】.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O C B A运动,点P的运动时间为t秒.
(1)当t=2时,求直线PD的解析式。
(2)当P在BC上,OP+PD有最小值时,求点P的坐标。
(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,E , F , G , H分别是OA , OB , OC , OD的中点,则正方形EFGH与正方形ABCD的面积比是( )
A.1:6
B.1:5
C.1:4
D.1:2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3),将点O , A , B , C的横坐标、纵坐标都乘以-2.
(1)画出以变化后的四个点为顶点的四边形;
(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A.B的距离,他们设计了如图所示的测量方案:从树A沿着垂直于AB的方向走到E , 再从E沿着垂直于AE的方向走到F , C为AE上一点,其中3位同学分别测得三组数据:①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根据所测数据求得A.B两树距离的有( )
A.0组
B.一组
C.二组
D.三组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线 . 某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图) . 已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)
A.34米
B.38米
C.45米
D.50米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
图象上的一个动点,过点P作PQ⊥x轴,垂足为Q . 若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( ).
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com