【题目】某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).
(1)求w与x之间的函数关系式;
(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?
(3)为了保护环境,政府部门要求用更加环保的新产品替代该商品,商场销售新产品,每月的销量与销售价格之间的关系与原产品的销售情况相同,新产品的成本每件32元,若新产品每月的销售量不低于200件时,政府部门给予每件4元的补贴,试求定价多少元时,每月销售新产品的利润最大?求出最大的利润。
【答案】
(1)解:w=(x﹣30)(﹣10x+600)=﹣10x2+900x﹣18000
(2)解:由题意得,﹣10x2+900x﹣18000=2000,解得:x1=40,x2=50,当x=40时,成本为30×(﹣10×40+600)=6000(元),当x=50时,成本为30×(﹣10×50+600)=3000(元),∴每月想要获得2000元的利润,每月成本至少3000元
(3)解:当y<200时,即:﹣10x+600<200,解得:x>40,w=(x﹣32)(﹣10x+600)=﹣10(x﹣46)2+1960,∵a=﹣10<0,x>40,∴当x=46时,w最大值=1960(元);
当y≥200时,即:﹣10x+600≥200,解得:x≤40,w=(x﹣32+4)(﹣10x+600)=﹣10(x﹣44)2+2560,∵a=﹣10<0,∴抛物线开口向下,当32<x≤40时,w随x的增大而增大,∴当x=40时,w最大值=2400(元),∵1960<2400,∴当x=40时,w最大.
答:定价每件40元时,每月销售新产品的利润最大,最大利润为2400元.
【解析】(1)利用利润法则:单件利润销量=利润,可列出函数表达式;(2)根据函数关系式的特殊值,列出方程,解方程求出结果;(3)根据销量进行分类讨论,分别列出分段函数,在自变量的取值范围内,根据二次函数的单调性,求出最值.
科目:初中数学 来源: 题型:
【题目】如图,点P在的BC边上,利用直尺和三角板画出图形.
(1)过点P作直线a与线段AB平行,交AC于点E;过点P作直线b与线段BC垂直,交AB于点F.
(2)在(1)的条件下,判断∠B与∠FPE的数量关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是( )
A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.当a= 时,△ABD是等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CA=CB,M,N分别AB上的两动点,且∠MCN=45°,下列结论:①;②CM2﹣CN2=NBNA﹣MBMA;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,求出D点坐标
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是( )
A.点A
B.点B
C.点C
D.点D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在数轴上有两点A、B,回答下列问题
(1)写出A、B两点所表示的数,并求线段AB的长;
(2)将点A向左移动个单位长度得到点C,点C表示的数是多少,并在数轴上表示出来
(3)数轴上存在一点D,使得C、D两点间的距离为8,请写出D点表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型 | 甲 | 乙 | 丙 |
汽车运载量(吨/辆) | 5 | 8 | 10 |
汽车运费(元/辆) | 400 | 500 | 600 |
(1)全部物资可用甲型车8辆,乙型车5辆,丙型车 辆来运送.
(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(3)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com