精英家教网 > 初中数学 > 题目详情

【题目】ABC中,ABAC

1)利用直尺和圆规完成如下操作,作∠BAC的平分线和AB的垂直平分线,交点为P(不写作法,保留作图瘕迹)

2)连结PB,若∠ABC65°,求∠ABP的度数.

【答案】1)如图,点P为所作;见解析;(2)∠ABP25°.

【解析】

1)利用基本作图,作AB的垂直平分线和∠BAC的平分线得到P点;

2AD为∠BAC的平分线,如图,利用等腰三角形的性质得ADBC,再利用PAPB得到∠ABP=∠BAP,然后利用互余计算出∠BAD25°,从而得到∠ABP的度数.

1)如图,点P为所作;

2AD为∠BAC的平分线,如图,

ABAC

ADBC

∵点PAB的垂直平分线上,

PAPB

∴∠ABP=∠BAP

∵∠ABD+BAD90°

∴∠BAD90°65°25°

∴∠ABP25°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P上一动点,连接AP,作∠APC=45°,交弦AB于点CAB=6cm

小元根据学习函数的经验,分别对线段APPCAC的长度进行了测量.

下面是小元的探究过程,请补充完整:

1)下表是点P上的不同位置,画图、测量,得到线段APPCAC长度的几组值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①经测量m的值是 (保留一位小数).

②在APPCAC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;

2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;

3)结合函数图象,解决问题:当ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有ABC三地,C地位于AB两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离ykm)与甲车行驶时间th)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形是由三个全等矩形拼成的,分别交于点,设的面积依次为,若,则的值为(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承中华优秀传统文化,市教育局决定开展经典诵读进校园活动,某校团委组织八年级100名学生进行经典诵读选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表。

组别

分数段

频次

频率

A

60x<70

17

0.17

B

70x<80

30

a

C

80x<90

b

0.45

D

90x<100

8

0.08

请根据所给信息,解答以下问题:

(1)表中a=___b=___

(2)请计算扇形统计图中B组对应扇形的圆心角的度数;

(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图RtABC中,∠ACB90°,∠B30°AC1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP12;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP22+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP33+按此规律继续旋转,直到点P2020为止,则AP2020等于_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?

(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,港口在观测站的正东方向处,某船从港口出发,沿东偏北方向匀速航行2小时后到达处,此时从观测站处测得该船位于北偏东的方向,求该船航行的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:

已知yx的函数,下表是yx的几组对应值.

x

5

4

3

2

0

1

2

3

4

5

y

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小孙同学根据学习函数的经验,利用上述表格反映出的yx之间的变化规律,对该函数的图象与性质进行了探究.

下面是小孙同学的探究过程,请补充完整;

1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:

2)根据画出的函数图象回答:

x=﹣1时,对应的函数值y的为   

若函数值y0,则x的取值范围是   

写出该函数的一条性质(不能与前面已有的重复):   

查看答案和解析>>

同步练习册答案