【题目】已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S
(1)求S关于x的函数表达式;
(2)求x的取值范围;
(3)求S=12时P点坐标;
(4)画出函数S的图象.
【答案】(1)s=40﹣4x,(2)0<x<10,(3)P点坐标(7,3),(4)见解析
【解析】
试题分析:(1)首先把x+y=10,变形成y=10﹣x,再利用三角形的面积求法:底×高÷2=S,可以得到S关于x的函数表达式;
(2)P在第一象限,故x>0,再利用三角形的面积S>0,可得到x的取值范围;
(3)把S=12代入函数解析式即可;
(4)根据题意画出图象,注意x,y的范围.
解:(1)∵x+y=10
∴y=10﹣x,
∴s=8(10﹣x)÷2=40﹣4x,
(2)∵40﹣4x>0,
∴x<10,
∴0<x<10,
(3)∵s=12,
∴12=40﹣4x,
x=7
∴y=10﹣7=3,
∴s=12时,P点坐标(7,3),
(4)函数S的图形如图所示.
科目:初中数学 来源: 题型:
【题目】下表是今年某水库一周内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),该水库的警戒水位是. (上周末的水位达到警戒水位).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化/ |
(1)本周星期________河流的水位最高,水位是________,本周星期________河流的水位最低,水位是________;
(2)本周三的水位位于警戒水位之_____(填“上”或“下”),与警戒水位的距离是______;
(3)与上周末相比,本周末河流水位是上升了还是下降了?变化了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC. 已知AB=2,DE=1,BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长;
(2)求AC+CE的值最小;
(3)根据(2)中的规律和结论,请构图求出代数式的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A2、B2、C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家______ 千米,张强从家到体育场用了______ 分钟;
(2)体育场离文具店______ 千米;
(3)张强在文具店逗留了______ 分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,,-3.观察数轴,与点A的距离为3的点表示的数是 ,A,B两点之间的距离为 。
(2)数轴上,点B关于点A的对称点表示的数是 ;
(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是 。
(4)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含a,b的式子表示这两个数)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点表示,点表示,点表示.动点从点出发,沿数轴正方向以每秒个单位的速度匀速运动;同时,动点从点出发,沿数轴负方向以每秒个单位的速度匀速运动.设运动时间为秒.
(1)当为何值时,、两点相遇?相遇点所对应的数是多少?
(2)在点出发后到达点之前,求为何值时,点到点的距离与点到点的距离相等;
(3)在点向右运动的过程中,是的中点,在点到达点之前,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com