精英家教网 > 初中数学 > 题目详情
2.如图,在△ABC中,DE∥BC交AB于点D,交AC于点E,若DE=3,BC=9,则$\frac{AE}{AC}$=$\frac{1}{3}$.

分析 利用DE∥BC可判断△ADE∽△ABC,然后根据相似三角形的性质求解.

解答 解:∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AE}{AC}$=$\frac{DE}{BC}$=$\frac{3}{9}$=$\frac{1}{3}$.
故答案为$\frac{1}{3}$.

点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在利用相似三角形的性质时,注意通过相似比计算相应线段的长或对应角线段.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.一组数据a、b、c、d、e、f、g的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是(  )
A.2m、2n-3B.2m-3、nC.m-3、2nD.2m-3、4n

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列事件中,属于必然事件的是(  )
A.打开电视,它正在播广告
B.掷两枚质地均匀的骰子,点数之和一定大于6
C.某射击运动员射击一次,命中靶心
D.早晨的太阳从东方升起

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,长方形OABC沿OB折叠,∠AOB=30°,点B的坐标为(3,$\sqrt{3}$),OD交BC于点E,则点E的坐标为(  )
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,$\sqrt{3}$)C.(2,$\sqrt{3}$)D.($\frac{3}{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如果将抛物线y=2x2向上平移1个单位,那么所得的抛物线的解析式是(  )
A.y=2(x-1)2B.y=2(x+1)2C.y=2x2-1D.y=2x2+1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.给出下列命题:①等腰三角形是轴对称图形;②若a2=b2,则a=b;③同位角相等;④两边和一角相等的两个三角形全等,其中正确的命题有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,AB是⊙O的直径,弦CD⊥AB于E,若OA=2,∠B=60°,则CD的长(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.70.78亿元用科学记数法表示为(  )
A.70.78×108B.7.078×108C.7.078×109D.7.078×1010

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有(  )
A.DE=DBB.DE=AEC.AE=BED.AE=BD

查看答案和解析>>

同步练习册答案