【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DE⊥AB于D,交AC于M,且ED=AC,过点E作EF∥BC分别交AB、AC于点F、N.
(1)试说明:△ABC≌△EFD;
(2)若∠A=25°,求∠EMN的度数.
【答案】
(1)解:∵DE⊥AB于D,
∴∠EDF=90°,
∵∠C=90°,
∴∠C=∠EDF,
∵EF∥BC,
∴∠B=∠EFD,
在△ABC与△EFD中,
,
∴△ABC≌△EFD(AAS)
(2)解:∵∠EDF=90°,
∴∠ADM=180°﹣∠EDF=90°,
在△ADM中,∠A+∠AMD+∠ADM=180°且∠A=25°
∴∠AMD=180°﹣∠A﹣∠ADM=65°,
∴∠EMN=∠AMD=65°
【解析】(1)根据平行线的性质求得∠B=∠EFD,然后依据AAS即可证得△ABC≌△EFD;(2)根据三角形内角和定理求得∠AMD,然后根据对顶角相等即可求得.
【考点精析】掌握三角形的内角和外角是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中有一点A,作点A关于y轴的对称点A′,再将点A′向下平移4个单位,得到点A′′(1,1),则点A的坐标是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中画出两条相交直线y=x和y=kx+b,交点为(x0,y0),在x轴上表示出不与x0重合的x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,依次类推到(xn,yn-1),我们来研究随着n的不断增加,xn的变化情况.如图1(注意:图在下页上),若k=2,b=—4,随着n的不断增加,xn逐渐______(填“靠近”或“远离”)x0;如图2,若k=,b=2,随着n的不断增加,xn逐渐______(填“靠近”或“远离”)x0;若随着n的不断增加,xn逐渐靠近x0,则k的取值范围为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com