精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,P为AD上一点,连接BP,CP,过C作CE⊥BP于点E,连接ED交PC于点F.

(1)求证:△ABP∽△ECB;
(2)若点E恰好为BP的中点,且AB=3,AP=k(0<k<3).
①求 的值(用含k的代数式表示);
②若M、N分别为PC,EC上的任意两点,连接NF,NM,当k= 时,求NF+NM的最小值.

【答案】
(1)

证明:在矩形ABCD中,

∵∠A=∠ABC=90°,

∵CE⊥BP,

∴∠CEB=90°,

∴∠A=∠CEB,

∴∠APB+∠ABP=∠ABP+∠PBC=90°,

∴∠APB=∠PBC,

∴△ABP∽△ECB


(2)

解:①∵△ABP∽△ECB,

∵BP= ,E为BP的中点,

∴BE=

∴BC=

过P作PH⊥PD交DE于H,

∴PD=BC﹣AP=

∵∠BEC=∠ADC=90°,

∴P,E.C,D四点共圆,

∴∠PDH=∠PCE=∠BCE=∠ABP,

∴△APB∽△PHD,

∴PH=

=

②当k= 时, =

过F作FG⊥BC于G交CE于N,反向延长交AD于H,

则FH⊥AD,过N作NM⊥PC于M,

∴NF+NM的最小值即为FG的长,

∴FG=

即NF+NM的最小值是


【解析】(1)根据矩形的想知道的∠A=∠ABC=90°,由余角的性质得到∠APB=∠PBC,根据相似三角形的判定定理即可得到结论;(2)①根据相似三角形的性质得到 ,得到BP= ,过P作PH⊥PD交DE于H,推出P,E.C,D四点共圆,根据圆周角定理得到∠PDH=∠PCE=∠BCE=∠ABP,根据相似三角形的想知道的 ,即可得到结论;②把k= 代入 = ,过F作FG⊥BC于G交CE于N,反向延长交AD于H,则FH⊥AD,过N作NM⊥PC于M,根据线段公理得到NF+NM的最小值即为FG的长,即可得到结论.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一堂关于“折纸问题”的数学综合实践探究课中,小明同学将一张矩形ABCD纸片,按如图进行折叠,分别在BC、AD两边上取两点E,F,使CE=AF,分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C′DE与△A′BF,且边C′E与A′B交于点G,边A′F与C′D交于一点H.已知tan∠EBG= ,A′G=6,C′G=1,则矩形纸片ABCD的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,点D是 的中点,且AB=4,∠BAC=50°,则AD的长度为cm(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是(
A.众数是60
B.中位数是100
C.平均数是78
D.极差是40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.

(1)求证:△BDE∽∠ADB;
(2)试判断直线DF与⊙O的位置关系,并说明理由;
(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).
(1)求证:方程总有两个实数根;
(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,BD为AC边的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AB=12,BC=5,则四边形BDFG的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1) =
(2)2x=3﹣x2

查看答案和解析>>

同步练习册答案