【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.
(1)试求抛物线的解析式;
(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;
(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.
【答案】(1)y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)最大值为,此时P(2,4).(3)(,3)或(6,﹣3).
【解析】试题分析:(1)设抛物线的解析式为y=a(x+2)(x﹣4),根据已知条件求得点C的坐标代入解析式求得a值,即可得抛物线的解析式;(2)作PE⊥x轴于E,交BC于F,易证△CMD∽△FMP,根据相似三角形的性质可得m=,设P(n,﹣n2+n+4),则F(n,﹣n+4),用n表示出PF的长,从而得到m、n的二次函数关系式,利用二次函数的性质解决问题即可;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形,分DP是矩形的边和DP是矩形的对角线两种情况求点N的坐标.
试题解析:
(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,设y=a(x+2)(x﹣4),
∵OC=2OA,OA=2,
∴C(0,4),代入抛物线的解析式得到a=﹣,
∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.
(2)如图1中,作PE⊥x轴于E,交BC于F.
∵CD∥PE,
∴△CMD∽△FMP,
∴m==,
∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),
∵BC的解析式为y=﹣x+4,
设P(n,﹣n2+n+4),则F(n,﹣n+4),
∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,
∴m==﹣(n﹣2)2+,
∵﹣<0,
∴当n=2时,m有最大值,最大值为,此时P(2,4).
(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.
①当DP是矩形的边时,有两种情形,
a、如图2﹣1中,四边形DQNP是矩形时,
有(2)可知P(2,4),代入y=kx+1中,得到k=,
∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),
由△DOE∽△QOD可得=,
∴OD2=OEOQ,
∴1=OQ,
∴OQ=,
∴Q(,0).
根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,
∴N(2+,4﹣1),即N(,3)
b、如图2﹣2中,四边形PDNQ是矩形时,
∵直线PD的解析式为y=x+1,PQ⊥PD,
∴直线PQ的解析式为y=﹣x+,
∴Q(8,0),
根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,
∴N(0+6,1﹣4),即N(6,﹣3).
②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,
∵Q是直角顶点,
∴QD2+QP2=PD2,
∴x2+1+(x﹣2)2+16=13,
整理得x2﹣2x+4=0,方程无解,此种情形不存在,
综上所述,满足条件的点N坐标为(,3)或(6,﹣3).
科目:初中数学 来源: 题型:
【题目】学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解:B.比较了解:C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题:
对雾霾的了解程度 | 百分比 | |
A | 非常了解 | 5% |
B | 比较了解 | m% |
C | 基本了解 | 45% |
D | 不了解 | n% |
(1)本次参与调查的市民共有________人,m=________,n=________.
(2)统计图中扇形D的圆心角是________度.
(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师为了解某校学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成如下统计图.
(1)李老师一共调查了多少名同学?并将下面条形统计图补充完整.
(2)若该校有1000名学生,则数学课前预习“很好”和“较好”总共约多少人?
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,求出所选两位同学恰好是一位男同学和一位女同学的概率.(要求列表或树状图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:
成绩x/分 | 频数 | 频率 | |
第1段 | x<60 | 2 | 0.04 |
第2段 | 60≤x<70 | 6 | 0.12 |
第3段 | 70≤x<80 | 9 | b |
第4段 | 80≤x<90 | a | 0.36 |
第5段 | 90≤x≤100 | 15 | 0.30 |
请根据所给信息,解答下列问题:
(1)a=______,b=______;
(2)请补全频数分布直方图;
(3)样本中,部分学生成绩的中位数落在第_______段;
(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.
(1)求证:EF是⊙O切线;
(2)若AB=15,EF=10,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市农林种植专家指导贫困户种植红梨和青枣,收获的红梨和青枣优先进入该市水果市场.已知某水果经销商购进了红梨和青枣两种水果各10箱,分配给下属的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如表
红梨/箱 | 青枣/箱 | |
甲店 | 22元 | 34元 |
乙店 | 18元 | 26元 |
(1)若甲、乙两店各配货10箱,其中甲店配红梨2箱,青枣8箱;乙店配红梨8箱,青枣2箱,请你计算出经销商能盈利多少元?
(2)若甲、乙两店各配货10箱,且在保证乙店盈利不小于200元的条件下,请你设计出使水果经销商盈利最大的配货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作平行四边形一边中点”的尺规作图过程.
已知:平行四边形ABCD.
求作:点M,使点M为边AD的中点.
作法:如图,
①作射线BA;
②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;
③连接EC交AD于点M.
所以点M就是所求作的点.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,ED.
∵四边形ABCD是平行四边形,
∴.
∵AE= ,
∴四边形EACD是平行四边形( )(填推理的依据).
∴( )(填推理的依据).
∴点M为所求作的边AD的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为( )
A. (1,2.5)B. (1,1+ )C. (1,3)D. (﹣1,1+ )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com