精英家教网 > 初中数学 > 题目详情
已知实数x,y满足x2-10x+
y+4
+25=0,则(x+y)2011的值是多少?
考点:配方法的应用,非负数的性质:偶次方,非负数的性质:算术平方根
专题:计算题
分析:先根据配方法得到(x-5)2+
y+4
=0,再根据几个非负数和的性质得到x-5=0,y+4=0,然后求出x和y后代入(x+y)2011中计算即可,
解答:解:∵x2-10x+25+
y+4
=0,
∴(x-5)2+
y+4
=0,
∴x-5=0,y+4=0,
∴x=5,y=-4,
∴(x+y)2011=(5-4)2011=1.
点评:本题考查了配方法的应用:配方法的理论依据是公式a2±2ab+b2=(a±b)2.也考查了非负数的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方程叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2
例如:二次三项式x2-2x+4运用配方法进行变形,可得:
x2-2x+4=x2-2x
+1+3
.
=x2-2•x•
1
.
+
12
.
+3=(x-1)2+3
x2-2x+4=x2
-4x
.
+4
+2x
.
=x2-
2•x•2
.
+22+2x=(x-2)2+2x
x2-2x+4=
1
4
x2
.
-2x+4
+
3
4
x2
.
=(
1
2
x
.
)2-2•
1
2
x
.
•2+22+
3
4
x2=(
1
2
x-2)2+
3
4
x2

因此(x-1)2
+3
.
(x-2)2
+2x
.
(
1
2
x-2)2
+
3
4
x2
.
是x2-2x+4的三种不同形式的配方式(即“余项”分别是常数项、一次项、二次项--见横线上的部分).
(1)比照上面的示例,写出x2+12x+16的三种不同形式的配方式;
(2)将a2+4ab+b2配方(至少两种形式);
(3)运用配方法解决问题:已知a2-4ab+5b2+c2-6b-2c+10=0,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

龙岩市某中学2013届九年级(1)班学生为四川雅安灾区人民开展募捐活动,募捐活动共收得募捐款2200元.班委会决定拿出不少于850元但不超过900元的募捐款直接汇给灾区红十字会,其余募捐款直接用于为灾区某校九年级(1)班50名同学每人购买一个文具盒或一个书包,并邮寄给他们,假定邮费共计30元;已知每个书包的单价比每个文具盒多12元,用176元恰好可以买到4个文具盒和3个书包.
(1)求每个文具盒和每个书包的价格分别为多少元;
(2)有几种购买文具盒和书包的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是等边△ABC内一点,∠AOB=10°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连结OD.
(1)求证:△COD是等边三角形;
(2)探究:当α为多少度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一动点,PE⊥AO于点E,PF⊥BO于点F,设PE=x,矩形PFOE的面积为s.
(1)求出s与x的函数关系式并直接写出自变量x的取值范围;
(2)当s=12时,求矩形PFOE的两邻边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)(x-1)(x10+x9+x8+…+x+1)=
 

(2)试求:1+2+22+23+…+263的值;
(3)判断22010+22009+22008+…+22+2+1的值的末位数字.(要有适当的过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值
x2-8x+16
x2+2x
÷(-
12
x+2
-2+x)-
1
x+4
,其中x为不等式组
x-2<0
5x+1>2(x-1)
的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)
2-x
x-3
+
1
3-x
=1;
(2)
2
x+3
+
3
2
=
7
2x+6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形△ABC中,射线AD四等分∠BAC交BC于点D,其中∠BAD>∠CAD,则
CD
BD
=
 

查看答案和解析>>

同步练习册答案