【题目】如图,正方形的边长为,点是边上的动点,从点开始沿向运动. 以为边,在的上方作正方形,交于点,连接、.请探究:
(1)线段与是否相等?请说明理由.
(2)若设,,当取何值时,最大?最大值是多少?
(3)当点运动到的何位置时,△∽△?
【答案】(1)AE =CG,理由见解析;(2)当时,有最大值为;(3)当E点是AD的中点时,△BEH∽△BAE,理由见解析
【解析】
(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质可证明∠3=∠4,由 SAS即可得到结论.
(2)先证△ABE∽△DEH,所以,即可求出函数解析式,继而求出最值.
(3)要使△BEH∽△BAE,需,又因为△ABE∽△DEH,所以,即,所以当E点是AD的中点时,△BEH∽△BAE.
(1)AE =CG.理由如下:
正方形ABCD和正方形BEFG中,∠3+∠EBC=90°,∠4+∠EBC=90°,∴ ∠3=∠4.
又∵AB=BC,BE=BG,∴△ABE≌△CBG,∴AE=CG.
(2)∵正方形ABCD和正方形BEFG,∴∠A=∠D=∠FEB=90°,∴ ∠1+∠2=90°,∠2+∠3=90°,∴ ∠1=∠3.
又∵∠A=∠D,∴△ABE∽△DEH ,∴,∴ ,∴ ,∴ 当时,有最大值为.
(3)当E点是AD的中点时,△BEH∽△BAE.理由如下:
∵ E是AD中点,∴ ,∴ .
又∵△ABE∽△DEH,∴ .
又∵ ,∴ .
又∵,∴△BEH∽△BAE.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
如图1,在线段AB上找一点C(AC>BC),若BC:AC=AC:AB,则称点C为线段AB的黄金分割点,这时比值为≈0.618,人们把称为黄金分割数.长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.
我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O表示数0,点E表示数2,过点E作EF⊥OE,且EF=OE,连接OF;以F为圆心,EF为半径作弧,交OF于H;再以O为圆心,OH为半径作弧,交OE于点P,则点P就是线段OE的黄金分割点.
根据材料回答下列问题:(1)线段OP长为_____,点P在数轴上表示的数为_____;(2)在(1)中计算线段OP长的依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | 16 |
|
戏剧 | 4 | |
散文 | a |
|
其他 | b | |
合计 | 1 |
根据图表提供的信息,解答下列问题:
(1)直接写出a,b,m的值;
(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好乙和丙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,点,点同时从点出发,速度均2cm/s,点沿向点运动,点沿向点运动,则△的面积与运动时间之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;
(1)求反比例函数的表达式;
(2)根据图象直接写出﹣x>的解集;
(3)将直线l1:y=- x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点O为正方形ABCD对角线的交点,且正方形ABCD的边均与某条坐标轴平行或垂直,AB=4.
(1)如果反比例函数y=的图象经过点A,求这个反比例函数的表达式;
(2)如果反比例函数y=的图象与正方形ABCD有公共点,请直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com