精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB90°AC6BC8,动点E从点A出发沿着线段AB向终点B运动,速度为每秒3个单位长度,过点EEFAB交直线AC于点F,连结CE.设点E的运动时间为t秒.

1)当点F在线段AC上(不含端点)时,

①求证:△ABC∽△AFE

②当t为何值时,△CEF的面积为1.2

2)在运动过程中,是否存在某时刻t,使△CEF为等腰三角形?若存在,求出t的值;若不存在,请说明理由.

【答案】1)①见解析;②秒或1秒;(2)存在,秒或

【解析】

1)①根据相似三角形的判定解答即可;

②过点 C CHAB H,利用相似三角形的性质和三角形面积公式解答即可;

2)根据等腰三角形的判定分两种情况解答.

解:(1)当点 F 在线段 AC 上时,

①证明如下:∵EFAB

∴∠AEF90°

在△ABC 中,∠ACB90°

∴∠ACB=∠AEF 又∵∠A=∠A

∴△ABC∽△AFE

②当 t 秒时,AE3t 由①得△ABC∽△AFE

,即

FE4t

RtABC 中,AB

过点 C CHAB H,如图 1

由面积法可得:

解得:

经检验,符合题意.

答:当 t 秒或 1 秒时,△CEF 的面积为 1.2

2)存在,理由如下:

i)当点 F 在线段 AC 上时(0t),

∵∠CFE=∠AEF+A90°

∴当△CEF 为等腰三角形时,只能是 FCFE

由②可知:FE4t

AF5tFC4t

5t+4t6

t

ii)当点 F 在线段 AC 的延长线上时(t),如图 2

∵∠FCE=∠FCB+ECB90°

∴当△CEF 为等腰三角形时,只能是 FCEC

此时∠F=∠CEF

EFAB

∴∠AEF90°,即∠CEA+CEF90° 又∠F+A90°

∴∠CEA=∠A

CEAC6

FC6

AF12 5t12

综上所述,t 的值为秒或秒时,△CEF 为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:①SBCE=36;SABE=12;④△AEFACD,其中一定正确的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:

  收集数据

从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:

八年级

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年级

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述数据

将成绩按如下分段整理、描述这两组样本数据:

成绩(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年级人数

0

0

1

11

7

1

九年级人数

1

0

0

7

10

2

(说明:成绩80分及以上为体质健康优秀,7079分为体质健康良好,6069分为体质健康合格,60分以下为体质健康不合格)

  分析数据

两组样本数据的平均数、中位数、众数、方差如表所示:

年级

平均数

中位数

众数

方差

八年级

78.3

77.5

75

33.6

九年级

78

80.5

a

52.1

1)表格中a的值为______

2)请你估计该校九年级体质健康优秀的学生人数为多少?

3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.

(1)用含t的代数式表示RtCPQ的面积S;

(2)t=3秒时,P、Q两点之间的距离是多少?

(3)t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,以为半径作优弧,交于点,交于点.在优弧上从点开始移动,到达点时停止,连接.

1)当时,判断与优弧的位置关系,并加以证明;

2)当时,求点在优弧上移动的路线长及线段的长.

3)连接,设的面积为,直接写出的取值范围.

备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在⊙O中直径为4,弦AB2,点C是圆上不同于AB的点,那么∠ACB度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.

(1)求抛物线的解析式;

(2)在AC上方的抛物线上有一动点P.

①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;

②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,抛物线轴的一个交点为(在点的左侧),过点垂直轴交直线于点

1)求抛物线的函数表达式;

2)将绕点顺时针旋转,点的对应点分别为点

①求点的坐标;

②将拋物线向右平移使它经过点,此时得到的抛物线记为,求出抛物线的函数表达式.

查看答案和解析>>

同步练习册答案