【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是 .(填正确结论的序号)
【答案】①②⑤
【解析】
试题①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac。故①正确。
②抛物线开口向上,得:a>0;
抛物线的对称轴为,b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0。故②正确。
③∵抛物线的对称轴为,b=﹣2a,∴2a+b=0,故2a﹣b=0。故③错误。
④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);
由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误。
⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0。故⑤正确。
综上所述,结论正确的有①②⑤。
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,甲种商品的进价比乙种商品的进价每件多80元,若用720元购进甲种商品的件数与用360元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价各是多少元?
(2)已知甲种商品的售价为240元/件,乙种商品的售价为130元/件,若超市销售甲、乙两种商品共80件,其中销售甲种商品为件(),设销售完80件甲、乙两种商品的总利润为元,求与之间的函数关系式,并求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(知识背景)我国古代把直角三角形较短的直角边称为“勾”,较长的的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,
当勾为3时,股,弦;
当勾为5时,股,弦;
当勾为7时,股,弦.
请仿照上面三组样例,用发现的规律填空:
(1)如果勾用,且为奇数)表示时,请用含有的式子表示股和弦,则股 ,弦 .
(问题解决)
(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果,,为大于1的整数),则、、为勾股数.请你证明柏拉图公式的正确性;
(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=∠C,点D在AC上,点E在BC上,AD=CE,BC=DC
(1)求证:DB=DE;
(2)如图2,若∠ABC=90°,求∠BED的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
关于x的方程:x+=c+的解为x1=c,x2=;x﹣=c﹣(可变形为x+=c+)的解为x1=c,x2=;x+=c+的解为x1=c,x2= Zx+=c+的解为x1=c,x2=Z.
(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+=c+(m≠0)的解为 .
(2)应用结论:解关于y的方程y﹣a=﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知△ABC,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法:①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1∶2;④△ABC与△DEF的面积比为4∶1. 正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)当y1随着x的增大而增大时,求自变量x的取值范围;
(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com