精英家教网 > 初中数学 > 题目详情
14.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).
(1)如图1,当OB、OC重合时,求∠EOF的度数;
(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE-∠BOF的值是否为定值?若是定值,求出∠AOE-∠BOF的值;若不是,请说明理由.
(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=30或50°或90°.

分析 (1)首先根据角平分线的定义求得∠EOB和∠COF的度数,然后根据∠EOF=∠EOB+∠COF求解;
(2)解法与(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;
(3)利用n表示出∠AOD,求得∠EOF的度数,根据∠AOD+∠EOF=6∠COD列方程求解.

解答 解:(1)∵OE平分∠AOC,OF平分∠BOD,
∴∠EOB=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×100°=50°,∠COF=$\frac{1}{2}$∠COD=$\frac{1}{2}$×40°=20°,
∴∠EOF=∠EOB+∠COF=50°+20°=70°;
(2)∠AOE-∠BOF的值是定值,理由是:
当0<n<80时,如图2.∠AOE-∠BOF的值是定值,理由是:
∠AOC=∠AOB+n°,∠BOD=∠COD+n°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠AOE=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(100°+n°),∠BOF=$\frac{1}{2}$∠BOD=$\frac{1}{2}$(40°+n°),
∴∠AOE-∠BOF=$\frac{1}{2}$(100°+n°)-$\frac{1}{2}$(40°+n°)=30°;
当80<n<90时,如图3.
∠AOE=$\frac{1}{2}$(360°-100°-α)=130°-$\frac{1}{2}$α,
∠BOF=$\frac{1}{2}$(40°+α),
则∠AOE-∠BOF=110°-α,不是定值;
(3)当0<<α<40时,C和D在OA的右侧,
∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,
∠EOF=∠EOC+∠COF=∠EOC+∠COD-∠DOF=$\frac{1}{2}$(100°+n°)+40°-$\frac{1}{2}$(40°+n°)=70°,
∵∠AOD+∠EOF=6∠COD,
∴(140+n)+70°=6×40,
∴n=30.
当40≤α<80时,如图2所示,D在OA的左侧,C在OA的右侧.
当∠AOD=∠AOB+∠COD+n°>180°时,∠AOD=360°-∠AOB-∠COD=220°-n°,∠EOF=70°,
∵∠AOD+∠EOF=6∠COD,
∴220°-n°+70°=6×40°,
解得n=50.
当80<α<140时,如图3所示,
∠AOD=360°-100°-40°-α=220°-n°,∠EOF=360°-(130°-$\frac{1}{2}$n)-$\frac{1}{2}$(40°+n)-100°=110°,
则(220-n)+110°=240°,
解得n=90°;
当140≤n<180时,
∠AOD=220°-n°,∠EOF=70°,
则220-n+70=240,解得n=50(舍去).
故答案是:30或50°或90°.

点评 本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.下列式子为最简二次根式的是(  )
A.$\sqrt{2}$B.$\sqrt{8}$C.$\sqrt{9}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.老师在黑板上出了一道解方程的题$\frac{2x-1}{3}=1-\frac{x+2}{4}$,小明马上举手,要求到黑板上做,他是这样做的:4(2x-1)=1-3(x+2)…①
8x-4=1-3x-6…②
8x+3x=1-6+4…③
11x=-1…④
x=-$\frac{1}{11}$…⑤
老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在①(填编号);然后,你自己细心地接下面的方程:
(1)3(3x+5)=2(2x-1)
(2)$\frac{2y-1}{4}-\frac{5y-7}{6}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图是一个数值运算的程序,若输出的y值为3,则输入的x值为(  )
A.3.5B.-3.5C.7D.-7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程(组):
(1)4-3x=6-5x;
(2)$\frac{x+1}{2}-1=\frac{2-x}{3}$;
(3)$\left\{\begin{array}{l}3x-y=7\\ x+3y=-1\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若分式方程$\frac{x}{x-1}$-1=$\frac{m}{(x-1)(x+2)}$无解,则m=(  )
A.0和3B.1C.1和-2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k倍(0<k<1).已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的$\frac{4}{7}$.设铁钉的长度为1,那么符合这一事实的方程是(  )
A.$\frac{4}{7}$(1+k)2=1B.$\frac{4}{7}$k+$\frac{4}{7}$k2=1C.$\frac{4}{7}$+$\frac{4}{7}$k+$\frac{4}{7}$k2=1D.$\frac{4}{7}$+$\frac{4}{7}$(1+k)2=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,在△ABC中,∠A=120°,AB=AC,D是BC边的中点,DE⊥AB,DF⊥AC,点E、F为垂足.
(1)求∠B、∠C的度数;
(2)求证:△BDE≌△CDF;
(3)求证:△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列式子成立的是(  )
A.$\frac{x^6}{x^2}={x^3}$B.$\frac{a-b}{a-b}=0$C.${({\frac{m}{2n}})^2}=\frac{m^2}{{4{n^2}}}$D.$\frac{{{a^2}+{b^2}}}{a+b}=a+b$

查看答案和解析>>

同步练习册答案