精英家教网 > 初中数学 > 题目详情

【题目】抛物线与x轴交于A,B两点(B在点A的右侧),A,B两点的坐标分别为(-2,0),(8,0),y轴交于点C(0,-4),连接BC,BC为一边O为对称中心作菱形BDEC,Px轴上的一个动点设点P的坐标为(m,0),过点Px轴的垂线L交抛物线于点Q,BD于点M.

(1)求抛物线的解析式

(2)当点P在线段OB上运动时试探究m为何值时四边形CQMD是平行四边形?

(3)位于第四象限内的抛物线上是否存在点N,使得△BCN的面积最大?若存在求出N点的坐标及△BCN面积的最大值若不存在请说明理由.

【答案】(1) 抛物线解析式为y=x2-x-4;(2) m=4四边形CQMD是平行四边形; (3) SBCN= 8.

【解析】

(1)用待定系数法直接求出抛物线解析式;
(2)由菱形的对称性可知,点D的坐标,根据待定系数法可求直线BD的解析式,根据平行四边形的性质可得关于m的方程,求得m的值;再根据平行四边形的判定可得四边形CQMD的形状;
(3)先判断出点N在平行于BC且与抛物线只有一个交点时的位置,确定出点N的坐标,用面积和差求出三角形BCN的面积.

(1)设抛物线的解析式为y=ax2+bx+c,

根据题意得,

抛物线解析式为y=x2-x-4.

(2)C(0,-4),

由菱形的对称性可知,点D的坐标为(0,4).

设直线BD的解析式为y=kx+b',则解得k=-,b'=4.

直线BD的解析式为y=-x+4.

lx轴,

M的坐标为,点Q的坐标为.

如图,当MQ=DC时,四边形CQMD是平行四边形,

=4-(-4).化简得m2-4m=0,解得m1=0(不合题意舍去),m2=4.

m=4时,四边形CQMD是平行四边形.

(3)存在,理由:

当过点N平行于直线BC的直线与抛物线只有一个交点时,BCN的面积最大.

B(8,0),C(0,-4),

BC=4.直线BC解析式为y=x-4,设过点N平行于直线BC的直线L解析是为y=x+n

抛物线解析式为y=x2-x-4,联立①②得,x2-8x-4(n+4)=0,

Δ=64+16(n+4)=0,

n=-8,

直线L解析式为y=x-8,将n=-8代入中得,x2-8x+16=0

x=4,

y=-6,

N(4,-6)

如图,过点NNGAB,

SBCN=S四边形OCNG+SMNG-SOBC=(4+6)×4+(8-4)×6-×8×6=8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,边长为1的正方形网格中,的三个顶点都在格点上.

1)作关于关于轴的对称图形,(其中的对称点分别是),并写出点坐标;

2轴上一点,请在图中画出使的周长最小时的点(不写画法,保留画图痕迹),并直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.

(1)当t=5秒时,点P走过的路径长为_________;当t=_________秒时,点P与点E重合;

(2)当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H. 若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;

(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边ABC 的边长为 4AD BC 边上的中线,F 是边 AD 上的动点,E 是边 AC 上的点, AE=2,且 EF+CF 取得最小值时.

)能否求出ECF 的度数?_____(用填空);

)如果能,请你在图中作出点 F(保留作图痕迹,不写证明).并直接写出ECF 的度 数;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCOAC边上的一个动点过点O作直线MNBCMNBCA的外角平分线CF于点FACB内角平分线CEE

1求证:EO=FO

2当点O运动到何处时四边形AECF是矩形?并证明你的结论;

3AC边上存在点O使四边形AECF是正方形猜想ABC的形状并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.

(1)求抛物线的表达式;

(2)设抛物线的对称轴为l,lx轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

(3)如图2,连接BC,PB,PC,设PBC的面积为S.

①求S关于t的函数表达式;

②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,CDAB上的中线,且DADBDC

1)已知∠A30°,求∠ACB的度数;

2)已知∠A40°,求∠ACB的度数;

3)已知∠Ax°,求∠ACB的度数;

4)请你根据解题结果归纳出一个结论.

查看答案和解析>>

同步练习册答案