如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:BD=CD.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
![]()
(1)证明见解析;(2)四边形AFBD是矩形.证明见解析.
【解析】
试题分析:(1)先由AF∥BC,利用平行线的性质可证∠AFE=∠DCE,而E是AD中点,那么AE=DE,∠AEF=∠DEC,利用AAS可证△AEF≌△DEC,那么有AF=DC,又AF=BD,从而有BD=CD;
(2)四边形AFBD是矩形.由于AF平行等于BD,易得四边形AFBD是平行四边形,又AB=AC,BD=CD,利用等腰三角形三线合一定理,可知AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
试题解析:(1)∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
,
∴△AEF≌△DEC,
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)四边形AFBD是矩形.
∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,
∴四边形AFBD是平行四边形,
又∵∠ADB=90°,
∴四边形AFBD是矩形.
考点:1.矩形的判定;2.全等三角形的判定与性质.
科目:初中数学 来源:2013-2014学年江苏省扬州市邗江区九年级中考一模数学试卷(解析版) 题型:填空题
若直线y=2x+b+c与x轴交于点(-3,0),则关于x的方程2x+b+c=0的解是 .
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省常州市九年级中考一模数学试卷(解析版) 题型:解答题
如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:四边形ABCD是矩形.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省常州市九年级中考一模数学试卷(解析版) 题型:选择题
若一次函数
,当
的值减小1,
的值就减小2,则当
的值增加2时,
的值( )
A.增加4 B.减小4 C.增加2 D.减小2
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省宜兴市和桥学区九年级下学期期中考试(一模)数学试卷(解析版) 题型:解答题
如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△GBD ∽△GDF,求证:BG⊥CG.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省宜兴市和桥学区九年级下学期期中考试(一模)数学试卷(解析版) 题型:填空题
如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= .
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省宜兴市和桥学区九年级下学期期中考试(一模)数学试卷(解析版) 题型:选择题
如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=
(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是 ( )
![]()
A.2 B.3 C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省太仓市九年级5月学科教学质量调研数学试卷(解析版) 题型:选择题
在坐标系中,已知四个点,坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),在A1、A2和B1、B2中分别各取一个点,与原点O连接构成三角形,则所得三角形是等腰三角形的概率是
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com