【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b>0;③a<﹣1;④b2+8a>4ac.其中正确的有:____(填写序号).
【答案】①③④.
【解析】
首先根据抛物线的开口方向得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1,0<x2<1,说明抛物线的对称轴在﹣1~0之间,即x=>﹣1,根据这些条件以及函数图象上一些特殊点的坐标来进行判断;
由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=>﹣1,且c>0.
①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;
②已知x=>﹣1,且a<0,所以2a﹣b<0,故②不正确;
③已知抛物线经过(﹣1,2),即a﹣b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a﹣2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a﹣c<﹣4;故3a<﹣3,即a<﹣1;所以③正确;
④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,
由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①③④.
故答案为①③④.
科目:初中数学 来源: 题型:
【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程ax2+(a+2)x+9a=0有两个不等的实数根x1,x2,且x1<1<x2,那么a的取值范围是( )
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,AC=20,点D与点A关于y轴对称,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.
(1)直接写出BC的长是 ,点D的坐标是 ;
(2)证明:△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(﹣1,0)两点,与反比例函数与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)求△AOM的面积;
(3)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=3,BC=4,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形;
(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com