【题目】已知:如图,在中,,,,点为斜边的中点,以为圆心,5为半径的圆与相交于、两点,连结、.
(1)求的长;
(2)求的正弦值.
【答案】(1)6;(2).
【解析】
(1)过点O作OG⊥EF于点G,根据垂径定理得出EG=FG,然后由O为AB的中点,OG∥AC可推出OG为△ABC的中位线,从而可求出OG的长,在Rt△OEG中,由勾股定理可求出EG的长,从而可得出EF的长;
(2)首先由直角三角形斜边中线的性质可得出CO=BO,然后根据等腰三角形的性质可得出CG=BG,由(1)中EG=3可得,CE=5=OE,所以∠COE=∠OCE,在Rt△OCG中,求出sin∠OCG的值即可得出结果.
解:(1)过点O作OG⊥EF于点G,
∴EG=FG,OG∥AC,
又O为AB的中点,∴G为BC的中点,即OG为△ABC的中位线,
∴OG=AC=4,
在Rt△OEG中,由勾股定理得,EG=,
∴EF=2EG=6;
(2)在Rt△ABC中,由勾股定理得,AB=,
又O为AB的中点,
∴CO=BO=4,又OG⊥BC,
∴CG=BG=BC=8,
∴CE=CG-EG=8-3=5,
∴CE=EO,
∴∠COE=∠OCE,
∴sin∠OCE=.
∴∠COE的正弦值为.
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位运动员在相同条件下各射靶次,每次射靶的成绩如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | |||
乙 | |||
丙 |
(2)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.
例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).
(1)直接写出点A(2,1)的“伴随点”A′的坐标.
(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.
(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.
(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:将矩形纸片ABCD折叠,使点A与点C重合(点D与D'为对应点),折痕为EF,连接AF.
(1)如图1,求证:四边形AECF为菱形;
(2)如图2,若FC=2DF,连接AC交EF于点O,连接DO、D'O,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.
(图1) (图2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点(点在点的左侧),与轴交于.
求点的坐标;
若点是抛物线在第二象限部分上的一动点,其横坐标为求为何值时,图中阴影部分面积最小,并写出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了建设社会主义新农村,我市积极推进“行政村通畅工程”,对甲村和乙村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程改造道路里程(公里)与时间(天)的函数关系大致的图像是( ).
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
已知:、是方程的两个实数根,且,抛物线的图像经过点、.
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与轴的另一交点为,抛物线的顶点为,试求出点、的坐标和的面积;
(3)是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请直接写出点的坐标 ;
(4)若点在直线上,点在平面上,直线上是否存在点,使以点、点、点、点为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线y1=﹣x与双曲线y=交于A,B两点,点C在x轴上,连接AC,BC.当AC⊥BC,S△ABC=15时,求k的值为( )
A.﹣10B.﹣9C.6D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
(1)判断直线l与圆O的关系,并说明理由;
(2)若的平分线BF交AD于点F,求证:;
(3)在(2)的条件下,若,,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com