精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB

1)如图1,图2,若△ABC为等腰直角三角形,

问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BNAM之间的位置关系是   ,数量关系是   

深入探究:②当点M在线段AB的延长线上时,判断线段BNAM之间的位置关系和数量关系,并说明理由;

2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MPCM交线段BN于点P,且∠CBA45°BC,当BM   时,BP的最大值为   

【答案】1)①AMBNAMBN;②AMBN位置关系是AMBN,数量关系是AMBN,见解析;(221.

【解析】

1)问题初现:①由“SAS”证明ACM≌△BCN,可得结论;

深入探究:②由“SAS”证明ACM≌△BCN,可得结论;

2)过点CCEAB于点E,过点NNFCE于点F,则FNAB,通过证明四边形FNBE是矩形,可得CEBE4,∠CEM=∠ABN90°,通过证明CEM∽△MBP,可得,即BP=BM22+1,由二次函数的性质可求解.

解:(1)问题初现:①AMBN位置关系是AMBN,数量关系是AMBN

理由:∵△ABCCMN为等腰直角三角形,

∴∠ACB=∠MCN90°ACBCCMCN,∠CAB=∠CBA45°

∴∠ACM=∠BCN,且 ACBCCMCN

∴△ACM≌△BCN SAS

∴∠CAM=∠CBN45°AMBN

∵∠CAB=∠CBA45°

∴∠ABN45°+45°90°,即 AMBN

故答案为:AMBN AMBN

深入探究:②当点M在线AB的延长线上时,AMBN位置关系是AMBN,数量关系是AMBN

理由如下:如图,

∵△ABCCMN为等腰直角三角形,

∴∠ACB=∠MCN90°ACBCCMCN,∠CAB=∠CBA45°

∴∠ACM=∠BCN,且 ACBCCMCN

∴△ACM≌△BCN SAS

∴∠CAM=∠CBN45°AMBN

∵∠CAB=∠CBA45°

∴∠ABN45°+45°90°,即 AMBN

2)如图,过点CCEAB于点E,过点NNFCEF,则FNAB

∵△MCN是等腰直角三角形

CMCN,∠MCN90°

∴∠ECM+FCN90°,且∠ECM+CME90°

∴∠FCN=∠CME,且CMCN,∠F=∠CEM90°

∴△CNF≌△CMEAAS

FNECEMCF

BCCEAB,∠CBA45°

CEBE4

FNBECE,且FNBA

∴四边形FNBE是平行四边形,且∠F90°

∴四边形FNBE是矩形

∴∠CEM=∠ABN90°

∴∠PMB+MPB90°

CMMP

∴∠CME+PMB90°

∴∠CME=∠MPB,且∠CEM=∠ABN90°

∴△CEM∽△MBP

BP=﹣BM22+1

∴当BM2时,BP有最大值为1

故答案为:21

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°AC3BC4,点DAB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1DBC,则点P与点B之间的距离为(  )

A.1B.C.1 3D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,黔南州近期举办了中小学生国学经典大赛.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分单人组双人组”.

(1)小丽参加单人组,她从中随机抽取一个比赛项目,恰好抽中三字经的概率是多少?

(2)小红和小明组成一个小组参加双人组比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中唐诗且小明抽中宋词的概率是多少?请用画树状图或列表的方法进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.

1)求甲、乙两人每天各加工多少个这种零件?

2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:若关于x的一元二次方程ax2+bx+c0的两个非零实数根分别为x1x2,则x1+x2=﹣x1x2.

解决下列问题:已知关于x的一元二次方程(x+n)26x有两个非零不等实数根x1x2,设m

()n1时,求m的值;

()是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地相向匀速行驶,甲车先出发两小时,甲车到达B地后立即调头,并保持原速度与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(干米),甲车行驶的时间为x小时,yx之间的函数图象如图所示,则当甲车重返A地时,乙车距离C________千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.

收集数据:

随机抽取甲乙两所学校的 20 名学生的数学成绩进行

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述数据

按如下数据段整理、描述这两组数据

分析数据

两组数据的平均数、中位数、众数、方差如下表:

a经统计,表格中m的值是 ___________

得出结论:

b若甲学校有 400 名初二学生,估计这次考试成绩 80 分以上人数为____________

c可以推断出 _______学校学生的数学水平较高,理由为:①__________________;②_________________.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线轴交于两点,且两点均在直线的下方,那么下列说法正确的是(

A.抛物线开口一定向上B.抛物线的顶点不可能在第四象限

C.抛物线与已知直线有两个交点D.抛物线的对称轴可能在轴右侧

查看答案和解析>>

同步练习册答案