【题目】甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发两小时,甲车到达B地后立即调头,并保持原速度与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(干米),甲车行驶的时间为x小时,y与x之间的函数图象如图所示,则当甲车重返A地时,乙车距离C地________千米.
科目:初中数学 来源: 题型:
【题目】随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.
(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;
(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.
(1)如图1,图2,若△ABC为等腰直角三角形,
问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是 ,数量关系是 ;
深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;
(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM= 时,BP的最大值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠ACD=90°,AC=DC,MN是过点A的直线,DB⊥MN于点B.
(1)如图,求证:BD+AB=BC;
(2)直线MN绕点A旋转,在旋转过程中,当∠BCD=30°,BD=时,求BC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的长度;
(2)求证:CE+BE=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O 及⊙O 外一点 P.
求作:⊙O 的一条切线,使这条切线经过点 P.
作法:①连接 OP,作 OP 的垂直平分线 l,交 OP 于点 A;
②以 A 为圆心,AO 为半径作圆,交⊙O 于点 M;
③作直线 PM,则直线 PM 即为⊙O 的切线.
根据小芸设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接 OM,
由作图可知,A 为 OP 中点,
∴OP 为⊙A 直径,
∴∠ =90°( )(填推理的依据)
即 OM⊥PM.
又∵点 M 在⊙O 上,
∴PM 是⊙O 的切线.( )(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
在综合与实践课上,同学们以“三角形的折叠”为主题开展数学活动.
操作发现
“杨辉”小组的同学用一张钝角三角形纸片,为钝角,进行了如下操作:
第一步:如图1,折出的角平分线;
第二步:如图2,展平纸片,再次折叠该三角形纸片,使预点与点重合,拆痕分别与,交于点,;
第三步:如图3,再次展平纸片,连接,,可得四边形.
(1)在图4的中利用尺规作出折痕,;
(要求:保留作图痕迹,不写作法)
实践探究
(2)试判断图3中四边形的形状,并写出证明过程;
深入探究
(3)“陈景润”小组的同学突发奇想,在“杨辉”小组同学操作的基础上设计了这样一个问题:在图3中,连接,分别交于点,交于点,若,,利用相似三角形的知识可以求出的长.请你写出求解过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com