【题目】如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)
(1)求梯步的高度MO;
(2)求树高MN.
【答案】(1)4米;(2)(14+4)米.
【解析】
(1)作EH⊥OB于H,由四边形MOHE是矩形,解Rt求得EH即可;
(2)设ON=OD=m,作AK⊥ON于K,则四边形AKOB是矩形,,OK=AB=2,想办法构建方程求得m即可.
(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.
∴OM=EH,
在Rt中,
∵∠EHF=90°,EF=4,∠EFH=45°,
∴EH=FH=OM=米.
(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,如图,
AK=BO,OK=AB=2
∵AB∥OD,∴,∴,∴OC=,
∴,
在Rt△AKN中,∵∠1=60°,
∴AK,∴,
∴m=(14+8)米,
∴MN=ON﹣OM=14+8﹣4=(14+4)米.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠ABC和 ∠BAC的平分线交于点E,延长AE分别交BC, ⊙O于点F, D,连接BD.
(1)求证: BD=DE.
(2)若BD=6,AD=10,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )
A.5 B.6 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:⊙O的一条切线,使这条切线经过点P.
作法:①连接OP,作OP的垂直平分线l,交OP于点A;
②以A为圆心,AO为半径作圆,交⊙O于点M;
③作直线PM,则直线PM即为⊙O的切线.
根据小芸设计的尺规作图过程,
(1)用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是( )
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com