精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD的长为( )
A.
B.
C.
D.7

【答案】C
【解析】解:∵y=﹣x2+4x+5=﹣(x﹣5)(x+1),

∴点A的坐标为(3,0),点B的坐标为(﹣1,0),点C的坐标为(0,5).

又∵D为AB的中点,

∴点D的坐标为(1,0).

∴CD= =

所以答案是:C.


【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A '处,点B落在点B '处,若∠1=115° ,则图中∠2的度数为(

A. 40°B. 45°C. 50°D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x(秒),△PBQ的面只为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围.
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于 的方程组

(1)请写出方程的所有正整数解;

(2)若方程组的解满足,求的值;

(3)无论实数取何值,方程总有一个公共解,你能把求出这个公共解吗?

(4)如果方程组有整数解,求整数的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明解不等式的过程如图请指出他解答过程中错误步骤的序号并写出正确的解答过程.

解:去分母3(1x)2(2x1)≤1.

去括号33x4x1≤1.

移项3x4x≤131.

合并同类项得-x≤3.

两边都除以-1x≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①或②

解不等式组①,得x3

解不等式组②,得

所以原分式不等式的解集为x3

探究:请你参考小亮思考问题的方法,解不等式

应用:不等式(x3)(x+5)≤0的解集是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.

(1)求证:ADBC=APBP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.

(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等边三角形.

(1)如图,点DAB边上,点EAC边上,BDCEBECD交于点F试判断BFCF的数量关系,并加以证明;

(2)点DAB边上的一个动点,点EAC边上的一个动点,且BDCEBECD交于点F.若△BFD是等腰三角形,求∠FBD的度数.

查看答案和解析>>

同步练习册答案