精英家教网 > 初中数学 > 题目详情

【题目】过矩形ABCD的对角线AC的中点OEFAC,交BC边于点E,交AD边于点F,分别连接AECF

1)求证:四边形AECF是菱形;

2)若AB6AC10EC,求EF的长.

【答案】1)证明见解析;(2.

【解析】

1)由矩形的性质可得∠ACB=∠DAC,然后利用ASA证明△AOF和△COE全等,根据全等三角形对应边相等可得OEOF,即可证四边形AECF是菱形;

2)由菱形的性质可得:菱形AECF的面积=EC×ABAC×EF,进而得到EF的长.

解:(1)∵四边形ABCD是矩形,

ADBC

∴∠ACB=∠DAC

OAC的中点,

AOCO

在△AOF和△COE中,

∴△AOF≌△COEASA),

OEOF,且AOCO

∴四边形AECF是平行四边形,

又∵EFAC

∴四边形AECF是菱形;

2)∵菱形AECF的面积=EC×ABAC×EF

又∵AB6AC10EC

×6×10×EF

解得EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,AB=AC=5cosB=P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PDAD

(1)求△ABC的面积;

(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;

(3)如果△APD是直角三角形,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图①由4根火柴棍围成;图②由12根火柴棍围成;图③由24根火柴棍围成;…按此规律,则第⑥个图形由( )根火柴棍围成.

A. 60 B. 72 C. 84 D. 112

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,GBC中点,点EAD边上,且∠1=2

(1)求证:EAD中点;

(2)FCD延长线上一点,连接BF,且满足∠3=2,求证:CD=BF+DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形

1)已知:如图1,四边形ABCD等对角四边形,∠A≠C,∠A=78°,∠B=82°,则∠C=_________,∠D=__________

2)在探究等对角四边形性质时:

①小红画了一个等对角四边形”ABCD(如图2),其中∠ABC=ADCAB=AD,此时她发现CB=CD成立.请你证明此结论;

②由此小红猜想:对于任意等对角四边形,当一组邻边相等时,另一组邻边也相等.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例(提示:举反例可画图并说明)

3)已知:在等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°AB=AD=,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.

1)求鼎丰超市11月份这种保温杯的售价是多少元?

2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O是以AB为直径的ABC的外接圆,过点A作O的切线交OC的延长线于点D,交BC的延长线于点E.

(1)求证:DAC=DCE;

(2)若AB=2,sinD=,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+ca≠0)的图象与x轴交于点A10),与y轴的交点B在(02)和(01)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc0 4a+2b+c0 4acb28a abc.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,分别以ADBC为边向内作等边ADE和等边BCF,连接BEDF.求证:四边形BEDF是平行四边形.

查看答案和解析>>

同步练习册答案