精英家教网 > 初中数学 > 题目详情

【题目】张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?

【答案】解:设原计划每天铺设管道x米, 依题意得:
解得x=10,
经检验,x=10是原方程的解,且符合题意.
答:原计划每天铺设管道10米
【解析】设原计划每天铺设管道x米,根据需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.
【考点精析】解答此题的关键在于理解分式方程的应用的相关知识,掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.
(1)若AC=5,则当t=时,四边形AMQN为菱形;当t=时,NQ与⊙O相切;
(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.

(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);

(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC=α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;

(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE(0°≤AOC≤180°,0°≤DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,EF分别是ABCD的中点,AFDE相交于点GCEBF相交于点H

(1)求证:四边形EHFG是平行四边形;

(2)ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;

(3)ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:

(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?
(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′
(3)当t为何值时,△APQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李先生参加了某电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款.

(1)写出yx的函数关系式.

(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

A、B、C为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是(A,B)的妙点.

例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的妙点,但点D是(B,A)的妙点.

知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.

(1)数   所表示的点是(M,N)的妙点;

(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发向左运动,到达点A停止.P点运动多少个单位时,P、AB中恰有一个点为其余两点的妙点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:

0

8

2

8

10

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)样本数据中为甲级的频率为;(直接填空)
(2)求样本中乙级数据的中位数和众数.
(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.

查看答案和解析>>

同步练习册答案