二次函数图象的顶点在原点O,经过点A(1,
);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
![]()
解答:(1)解:∵二次函数图象的顶点在原点O,
∴设二次函数的解析式为y=ax2,
将点A(1,
)代入y=ax2得:a=
,
∴二次函数的解析式
为y=
x2;
(2)证明:∵点P在抛物线y=
x2上,
∴可设点P的坐标为(x,
x2),
过点P作P
B⊥y轴于点B,则BF=
x2﹣1,PB=x,
∴Rt△BPF中,
PF=
=
x2+1,
∵PM⊥直线y=﹣1,
∴PM=
x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥x轴,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)解:当△FPM是等边三角形时,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴
x2+1=4,
解得:x=±2
,
∴
x
2=
×12=3,
∴满足条件的点P的坐标为(2
,3)或(﹣2
,3).
![]()
科目:初中数学 来源: 题型:
如图2 - 81所示,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的.点O′在x轴的正半轴上,点B的坐标为(1,3).
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点,且图象顶点M的纵坐标为-l,求这个二次函数的解析式;
(2)在(1)中求出的二次函数图象对
称轴的右侧,是否存在点P,使得△POM为直角三角形?若存在,求出点P的坐标和△POM的面积;若不存在,请说明理由;
(3)求边C′O′所在直线的解析式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
把二次函数y=2x2-4x+5化成y=a(x-h)2+k的形式是 ,其图象开口方向 ,顶点坐标是 ,当x= 时,函数y有最 值,当x 时,y随x的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为 元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com