【题目】吉祥超市准备购进甲、乙两种绿色袋装食品共800袋.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲 | 乙 | |
进价(元/袋) | m | m﹣2 |
售价(元/袋) | 20 | 13 |
(1)求m的值;
(2)假如购进的甲、乙两种绿色袋装食品全部卖出,所获总利润不少于5200元,且不超过5280元,问该超市有几种进货方案?(利润=售价﹣进价)
【答案】(1)10;(2)超市有17种进货方案
【解析】
(1)根据数量=总价÷单价结合用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同,即可得出关于m的分式方程,解之经检验后即可得出结论;
(2)设购进甲种袋装食品x袋,则购进乙种袋装食品(800﹣x)袋,根据总利润=每袋的利润×购进数量结合所获总利润不少于5200元且不超过5280元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出该超市有17种进货方案.
(1)依题意,得: ,
解得:m=10,
经检验,m=10是原方程的解,且符合题意.
答:m的值为10.
(2)设购进甲种袋装食品x袋,则购进乙种袋装食品(800﹣x)袋,
依题意,得: ,
解得:240≤x≤256.
∵x为正整数,
∴x=240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256.
答:该超市有17种进货方案.
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中有3个分别标有数字-1、1、2的小球,它们除标的数字不同外无其他区别.
(1)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;
(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为( )
A.8.5B.15C.17D.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:10月1日,正值祖国母亲70岁生日,我校两校区共有4名教师光荣地加入了群众游行﹣﹣“扬帆远航”方阵;一名老师作为志愿者,负责广场人员的集结和疏散.老师们在周一国旗下讲话时说:“我们的步数、欢呼声、气球浪和笑容都是有指标的”确保队伍行进时做到万无一失.载有国之重器的装甲车,在阅兵时更是精确到秒.从东华表至西华表(东、西华表间的距离为96米)所用的时间是固定的:每辆装甲车必须保证36s之内通过.如果彩排时有两辆装甲车同时从东华表出发,乙的速度是甲的1.1倍,又已知乙到达西华表的时间正好比甲提前3s,那么
(1)甲的速度是每秒多少米(结果精确到1米/秒)?
(2)这两辆装甲车能顺利完成彩排任务吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)2015年国庆期间,西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;
(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?
(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接第十一届少数民族传统体育运动会,郑州市园林局打算购买A,B两种花装点城区道路,负责人小李去花卉基地调查发现:购买2盆A种花和3盆B种花需要23元,购买4盆A种花和2盆B种花需要26元.
(1)求A,B两种花的单价各为多少元?
(2)郑州市园林局若购买A, B两种花共12000盆,且购买的A种花不少于3000盆,但不多于5000盆,若购买的A种花不超于3000盆时,花卉基地会给每盆A种花打8折,
①设购买的A种花m盆,总费用为W元,求w与m的关系式:
②请你帮小李设计一种购花方案使花费总少?并求出最少费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com