【题目】问题背景:
如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC、CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
(1)小明同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
(2)探索延伸:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,请说明理由;
(3)实际应用:
如图③,在某次军事演习中,舰艇甲在指挥中心O北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,当∠EOF=70°时,两舰艇之间的距离是海里.
(4)能力提高:
如图④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为 .
【答案】
(1)EF=BE+DF
(2)
解:结论EF=BE+DF仍然成立;
理由:延长FD到点G.使DG=BE.连结AG,如图②,
在△ABE和△ADG中, ,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中, ,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)280
(4)
【解析】解:(1.)EF=BE+DF,证明如下:
在△ABE和△ADG中, ,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中, ,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
所以答案是 EF=BE+DF.
(3.)如图③,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,
∴∠EOF= ∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(60+80)=280海里.
答:此时两舰艇之间的距离是280海里;
所以答案是:280;
(4.)如图4,
将△ABM绕点A逆时针旋转得到△ACD,
∴△ABM≌△ACD,
∴∠AMB=∠ADC,∠BAM=∠CAM,AM=AD,BM=CD=1,
∵∠AMB+∠AMC=90°,
∴∠AMC+∠ADC=180°,
∴∠MAD+∠MCD=180°,
∵∠BAC=90°,
∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=90°,
∴∠MCD=90°,
在Rt△NCD中,CN=3,CD=1,
根据勾股定理得,ND= ,
∵∠MAD=90°,∠MAN=45°,
∴∠DAN=45°,
∵AM=AD,AN=AN,
∴△MAN≌△DAN,
∴MN=DN= ,
所以答案是 .
【考点精析】认真审题,首先需要了解全等三角形的性质(全等三角形的对应边相等; 全等三角形的对应角相等).
科目:初中数学 来源: 题型:
【题目】如图,已知锐角三角形ABC,以点A为圆心,AC为半径画弧与BC交于点E,分别以点E、C为圆心,以大于 EC的长为半径画弧相交于点P,作射线AP,交BC于点D.若BC=5,AD=4,tan∠BAD= ,则AC的长为( )
A.3
B.5
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(a,0),B(b,0),且+| b-6|=0.
(1)求A,B的坐标;
(2)如图2,点P为AB的垂直平分线上一点,BD⊥AP于点D,BE是△PBD的角平分线,EH⊥AB于点H,交BD于点G,若AD=m,DE=n,求△BEG的面积(用含m,n的式子表示);
(3)如图3,点M在AB的垂直平分线上,且∠MAB=40°,点N在MA的延长线上,且MN=8,求∠ABN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为创建国家文明城市,我市特在每个红绿灯处设置了文明监督岗,文明劝导员老牛某工作日在市中心的一个十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段闯红灯的人数制作了如图所示的尚不完整的统计图,请根据统计图解答下列问题:
(1)该工作日7:00~12:00共有人闯红灯?
(2)①补全条形统计图, ②计算扇形统计图中10~11点所对应的圆心角的度数.
(3)该工作日7:00~12:00,各时间段闯红灯的人数的方差是
(4)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,点P在四边形ABCD上,若P到BD的距离为 ,则点P的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,E为AD的中点,F为BC边上一动点,设BF=t(0≤t≤2),线段EF的垂直平分线GH分别交边CD,AB于点G,H,过E做EM⊥BC于点M,过G作GN⊥AB于点N.
(1)当t≠2时,求证:△EMF≌△GNH;
(2)顺次连接E、H、F、G,设四边形EHFG的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com